Semantic Array Dataflow Analysis

Paul Iannetta* Univ Lyon, Université Claude Bernard Lyon 1 CNRS, ENS de Lyon, Inria, LIP, F-69342, LYON Cedex 07, France paul.iannetta@ens-lyon.fr

> Lionel Morel[†] Univ Grenoble Alpes, CEA, List F-38000 Grenoble, France lionel.morel@cea.fr

Abstract

This paper revisits the polyhedral model's key analysis, dependency analysis. The semantic formulation we propose allows a new definition of the notion of dependency and the computation of the dependency set. As a side effect, we propose a general algorithm to compute *an over-approximation of* the dependency set of general imperative programs.

We argue that this new formalization will later allow for a new vision of the polyhedral model in terms of semantics, which will help us fully characterize its expressivity and applicability. We also believe that abstract semantics will be the key for designing an approximate abstract model in order to enhance the applicability of the polyhedral model.

Keywords polyhedral model, operational semantics

1 Introduction

Multi-core processors, and parallel processing in general, are now broadly used. Their horizon of applications ranges from mobile platforms to high-performance computing. Allowing non-expert programmers to harness the parallelism in recent hardware require significant advances in the entire compilation chain. It also means that the general forms of sequential programs, *e.g.*, with while loops and data-dependent control structures, should be amenable to parallelization.

The polyhedral model [7] is a powerful algebraic framework that is at the core of many advances in optimization and code generation of numerical kernels. One reason of its success is the practicality of the operations that are expressed in terms of algebraic computations on affine sets.

One of the major limitations of this model is that it only applies to programs with regular control and loops with static bounds. The main issue is that the polyhedral model's algorithms are defined with strong assumptions on the *shape* Laure Gonnord Univ Lyon, Université Claude Bernard Lyon 1 CNRS, ENS de Lyon, Inria, LIP, F-69342, LYON Cedex 07, France laure.gonnord@ens-lyon.fr

> Tomofumi Yuki Inria, Univ Rennes, CNRS, IRISA F-35000 Rennes, France tomofumi.yuki@inria.fr

of programs under analysis, which make the underlying problems decidable. However, checking those requirements is sometimes not trivial:

- A programmer may have written an algorithm that is inherently polyhedral in a way that is not compliant with the syntactic restrictions of the polyhedral model;
- The compiler may have transformed the polyhedral input program in such a way that the polyhedral structure does not appear syntactically any more.

We argue that this is an important limitation for further extending the polyhedral model. In this paper, we propose to redefine the dataflow analysis based on the operational semantics of programs. By doing so we claim that we leverage the constraints of the previous definitions and increase the range of applicability of the polyhedral model.

From a general viewpoint, our work lies in the semantic consolidation of the polyhedral model to allow its extension with static analysis techniques that opens the door to the parallelization of irregular programs (*i.e.*, with while loops and more general data structures such as trees or maps).

A strategic prerequisite for this long-term goal is to propose a unified formal setting that describes the semantics of general programs. As a first step for this work, the present paper proposes a semantic-based description of the array dataflow analysis [5]. This paper also proposes a precise definition of *covertly regular programs* for which the classical algorithms of the polyhedral community are exactly applicable, and a notion of polyhedral approximation for more general programs.

Overview

This work is a first step towards a clear semantic of the polyhedral model. The contributions of the paper are:

- A semantic definition of the notion of dependency *à la polyhedral model*, on a general imperative language;
- A rephrasing of the classical array dataflow analysis [5] in our setting, which enables us to recover classical results from the community;

^{*}This work was partially funded by the French National Agency of Research in the CODAS Project (ANR-17-CE23-0004-01)

[†]Part of this work was carried out while the author was with INSA Lyon, Université de Lyon.

IMPACT'19, January 21-23, 2019, Valencia, Spain 2019.

- The definition of the notion of *covertly-regular* programs for which the polyhedral model algorithms and tools can be applied as-is;
- A notion of *approximated polyhedral model* for programs with non polyhedral control, on which we can compute an over-approximated set of dependence.

The rest of the paper is organized as follows: Section 2 recalls the notion of data dependency set and its classical computation in the polyhedral model framework; Section 3 describes our model of program and its semantics enriched with an extended notion of *iteration vector*; Section 4 gives a semantic-based notion of dependencies for our general class of programs. Then, Section 5 proves the equivalence of our definition with the initial one on *regular polyhedral* programs, enabling us to define the notion of *covertly regular polyhedral* programs. Section 6 gives an algorithm to compute an overapproximation of the dependency set for programs with nonpolyhedral control, opening perspectives to a more general *approximate polyhedral model*; Section 7 compares our work to existing works. Finally, we conclude in Section 8 with some directions for future work.

2 Background: Array Dataflow Analysis

The seminal paper *Array Dataflow Analysis* [5] proposed exact dependency analysis for loops with static and affine control. In this section, we present an overview of the results and algorithms of this paper, rephrased with our semantic-based formalization in view.

Informally, a *data dependency* between two operations exists when two operations access to the same memory location, with at least one of them being a write. These include benign dependencies as well as *true dependencies*, which are defined based on the notion of *most recent write*. The paper shows that for affine loops the above can be formulated with Integer Linear Programming, hence providing an exact solution, which we recall below.

2.1 Tracking Operations

In order to optimize the operations of a given program, a typical polyhedral compilation flow computes the instancewise and element-wise dependencies. The analysis identifies dependencies between all operations operating on array as long as they are within the affine restrictions. Two operations that do not depend on each other can be parallelized, or at least, rescheduled in an order different than the lexical order of the original program. The notion of dependency between operations is thus central to program transformations.

Those dependencies are expressed by giving a unique identifier to each operation – an *iteration vector* – whose coordinates are loop counters. The first coordinate is the outermost loop's counter while the last coordinate is the

(* a and b are n-n matrices and c = ab *)
1 for i from 1 to n
2 for j from 1 to n
3 c[i, j] := 0 (* s1 *)
4 for k from 1 to n
5 c[i i] := c[i i] + a[i k] * b[k i] (* s)

5 c[i, j] := c[i, j] + a[i, k] * b[k, j] (* s2 *)

Figure 1. Product of matrices with a for loop.

innermost loop's counter. For example, in the listing of Figure 1 the iteration vector on line 3 is $\langle i, j \rangle$ while the iteration vector on line 5 is $\langle i, j, k \rangle$.

Remark (loop counter). In the context of **for** loops, the concept of iteration variable is crystal clear since it is the same as loop counters. However, when dealing with while loops, the definition is not as clear and is addressed later.

From now on, statements are denoted by s_i , instantiated iteration vectors by t_j (because such a vector can be seen as a timestamp) and operations by a pair $\langle s_i, t_j \rangle$. Note that two operations can have the same iteration vector, typically when they are at the same loop level. In order to know which is before the other a boolean T_{s_1,s_2} is set to true if s_1 is before s_2 in the text source program. Intuitively, we define $Q_{s_1,s_2}(t)$ as the set of all the operations involving s_1 that have an influence on the computation of s_2 at time t. And we define $K_{s_1,s_2}(t)$ as the last operation having an influence on the computation of s_2 at time t.

2.2 Computation of Dependencies

We now formally define *K* and *Q*, and explain how they are computed within the context of the polyhedral model. Let us assume that we are computing values for a matrix *M*, and that we want to compute the operations on which $o_2 = \langle s_2, t_2 \rangle$ (an operation that needs to read values in *M*) depends. Moreover, let us assume that o_2 needs to read $M[g(t_2)]$, where *g* is an affine function of the iteration vector t_2 .

However, before we can compute $Q_{s_1,s_2}(t_2)$ we need to gather candidates for s_1 . We will thus take into account all operations whose statement is of the form $M[f(t_1)] := ...$ where f is an affine access function of the iteration vector. The research can be restricted to operations that *happen before* s_2 in the program flow. The operations on which s_2 depend will then be the union of the operations found with s_1 as their statement.

In order to explicitly define and compute *Q*, the following conditions have to be fulfilled:

- *C*₁: the arrays/matrices cells that s_1 and s_2 try to access should match: $f(t_1) = g(t_2)$;
- *C*₂: (*s*₁, *t*₁) should happen before (*s*₂, *t*₂) (*i.e.*, *t*₁ \triangleleft *t*₂, or ((*t*₁ = *t*₂) \land *T*_{*s*₁,*s*₂) where \triangleleft is the lexicographic ordering on vectors and *T* the textual ordering). This condition is denoted by $\langle s_1, t_1 \rangle < \langle s_2, t_2 \rangle$}

 $C_3 t_1$ must be a valid iteration (denoted as $e(t_1) \ge 0$, this notation will become clear in Example 1.)

Hence, the following definition of $Q_{s_1,s_2}(t)$ as:

$$t' \mid f(t') = g(t), \ \langle s_1, t' \rangle < \langle s_2, t \rangle, \ \mathbf{e}(t') \ge 0 \ \}$$

and $K_{s_1,s_2}(t_2)$ as:

{

$$\max Q_{s_1,s_2}(t_2).$$

Theorem 1 (Dependencies are computable in the polyhedral model). *In the polyhedral model setting (static control), the set of dependencies of a given operation is computable.*

Proof. The proof can be found in the original paper [5]. The 3 conditions above lead to a system of affine constraints whose lexicographic maximum is then computable by a Parametrized Integer Linear Programming solver (such as PIP [4]).

Example 1 (Computations of dependencies for the matrix product, shown in Figure 1). *This program is made of two statements:* s_1 *on line* 3 *and* s_2 *on line* 5, *that both write values for the array c. In order to compute the dependencies we need to compute* Q_{s_1,s_1} , Q_{s_1,s_2} *and* Q_{s_2,s_2} . *The respective Ks will be computed by taking the lexicographic maximum on the Qs.*

Let us start by computing Q_{s_1,s_1} . We can see that s_1 does not need to read any variable. Hence, Q_{s_1,s_1} is empty.

Now, let us compute Q_{s_1,s_2} . Let $\langle i_1, j_1 \rangle$ be the iteration vector of statement s_1 and $\langle i_2, j_2, k_2 \rangle$ the iteration vector of statement s_2 . We can then express C_1 , C_2 and C_3 as affine conditions. C_1 is $\langle i_1, j_1 \rangle = \langle i_2, j_2 \rangle$. C_2 is $\langle i_1, j_1 \rangle \triangleleft \langle i_2, j_2, k_2 \rangle$. And C_3 is $1 \leq i, j \leq n$. This leads to $Q(s_1, s_2)(\langle i_2, j_2, k_2 \rangle)$ being equal to:

$$\{ \langle i_1, j_1 \rangle \mid i_1 = i_2 \land j_1 = j_2 \}.$$

Lastly, let us compute Q_{s_2,s_2} . Let $\langle i_2, j_2, k_2 \rangle$ and $\langle i'_2, j'_2, k'_2 \rangle$ be the iteration vectors of statement s_2 at two distinct instants. All conditions can be expressed as affine conditions: C_1 is $\langle i_2, j_2, k_2 \rangle = \langle i'_2, j'_2, k'_2 \rangle$, C_2 is $\langle i_2, j_2, k_2 \rangle \triangleleft \langle i'_2, j'_2, k'_2 \rangle$, and C_3 is $1 \leq i_2, j_2, k_2 \leq n$. This gives $Q(s_2, s_2)(\langle i'_2, j'_2, k'_2 \rangle)$ as:

$$\{ \langle i_2, j_2, k_2 \rangle \mid i_2 = i'_2 \land j_2 = j'_2 \land k_2 < k'_2 \}.$$

2.3 Discussion

The analysis led to an efficient algorithm to store and compute (most recent) dependencies when:

- Loop iterators are easily definable and their domain is easily exactly computable (condition C3);
- Memory accesses are affine functions of loop iterators (condition C1);
- The happens-before relation is a function of syntax elements (condition C2).

What we propose in this paper is to relax these assumptions to rely less on syntactic elements, and to re-formulate the analysis based on an operational semantics of the language.

3 General Imperative Programs With Iteration Vectors

For the formalization, we use a variant of the classical (smallsteps) operational semantics of a general imperative language with scalars and arrays, where we exhibit the notion of iteration vector. The syntax of the mini-language is depicted in Section 3.1, our extension for iteration vectors in Section 3.2. The semantics described in Section 3.3 then enables us to properly define the notion of trace in Section 3.4.

3.1 A Mini Language

The language we propose is a pointer-less imperative language with native support for while loops, if statements as well as arrays of integers (scalars are degenerated arrays with one cell).

In the grammar depicted in Figure 2, capital letters (X, Y, Z) are used as placeholders for variable names. *n* represents an element of \mathbb{N} and terms in lowercase are an instance of the expression rule which shares the same first letter: *e.g.*, *a*. is an instance of Aexp, *b*. is an instance of Bexp, and so on. The " κ_n :" notation is explained in Section 3.2 and can be safely ignored at this point.

$$\langle Aexp \rangle :::= n \mid a_0 \langle Aop \rangle a_1 \mid v_0 \\ \langle Aop \rangle :::= `+` \mid `*` \mid `-` \mid `/` \mid `mod` \\ \langle Bexp \rangle :::= `true` \mid `false` \mid !(b_0) \\ \mid b_0 \langle Bop \rangle b_1 \mid a_0 \langle Cop \rangle a_1 \\ \langle Bop \rangle :::= `or` \mid `and` \mid `=` \\ \langle Cop \rangle :::= `<=` \mid `=>` \mid `<>` \mid `=` \\ \langle Vexp \rangle :::= X \mid X`[`a_0`]` \\ \langle Sexp \rangle :::= \kappa_n` :begin' \mid `skip` \mid s_0`; `s_1 \\ \mid \kappa_n` ::if` b_0` then` s_0` else` s_1` fi` \\ \mid \kappa_n` :while` b_0` do` s_0` done` \\ \mid v_0` ::=` a_0$$

The grammar itself is permissive and recognizes programs that are syntactically outside of the scope addressed by the polyhedral model.

3.2 Semantic Extension: Iteration Variables and Iteration Vectors for our Language

In the classical polyhedral model, for loops naturally introduce counter variables. These are convenient to number the operations and use those as labels when investigating their dependencies. For general programs with tests and while loops, there is no canonical way to implicitly define iteration variables. We thus explicitly introduce them in our language and semantics. This kind of instrumentation is classic in other static program analyses such as Worst-Case Execution Time (WCET) analysis [11] or complexity estimation [10].

Fresh iteration variables $\kappa_i \in Name$ are created so that operations are numbered hierarchically, the first level counts the number of operations at level zero, the second level those at level one, and so on. The iteration vector is the concatenation of those variables. The leftmost coordinate is the iteration variable of the outermost loop and the rightmost coordinate is the iteration variable of the innermost loop. This allows sorting operations by their iteration vector, with respect to the lexicographic order. We illustrate this process with an example in the following.

Example 2. Figure 3 depicts a simple array filling procedure with a while loop. We annotated each control statement with a κ_i . These iteration variables are introduced so as to number the operations hierarchically.

```
1 \kappa_0:begin
1 c[0] := 0;
                                  2 c[0] := 0;
2 i := 1;
                                  3 i := 1;
3 while i <= n do
                                  4 \kappa_1:while i <= n do
    c[i] := c[i-1] + 1;
4
                                  5 c[i] := c[i-1] + 1;
    i := i + 1
5
                                  6 i := i + 1;
6 done
                                  7 done
                                      b) After annotation
    a) Before annotation
```

Figure 3. Array filling with increasing values

As for **if** statements, we have to do some extra work in order to make them compatible with the lexicographic order. In the annotation step, we only annotate the test itself, the actual numbering of the sub-statements will be performed in the semantic rules, as we will later see in Figure 7.

Example 3. Figure 4 shows an example of an if branch annotation. Only the test itself is annotated.

```
1 \kappa_0:begin
1 i := 5;
                                 2 i := 5;
2 while i > 1 do
                                  3 \kappa_1:while i \Leftrightarrow 1
3 if i mod 2 == 0
                                  4 \kappa_2: if i \mod 2 == 0:
4
     i := i / 2
                                  5
                                        i := i / 2;
5 else
                                  6 else:
    i := 3 * i + 1
6
                                  7
                                       i := 3 * i + 1
7 done
                                 8 done
 a) Before annotation
                                     b) After annotation
```

Figure 4. The Syracuse algorithm

For example, on line 4 of 4b the (uninstantiated) iteration vector is $(\kappa_0 \kappa_1 \kappa_2)$. When the program is run, on line 4, the

iteration vector will contain the current values of κ_0 , κ_1 and κ_2 . At the end the iteration vector is $[\langle \kappa_0, 3 \rangle]$, because κ_2 has been dropped at the end of the if and κ_1 as been dropped at the end of the value.

The annotation process is straightforward as it appends κ_n just before the construct that goes on one step deeper, and adds a begin annotation with label κ_0 at the beginning of the program. The semantics described in Section 3.3 takes such an annotated program as input.

Remark. Our annotation system is different form the usual notation used in the polyhedral model (the 2n+1 notation [2]), which may use two dimensions to represent one loop: one dimension that corresponds to the number of iteration of the loop and one that would number the internal statements.

However, the reason behind the fact that we use only one dimension is that we want to be able to map each level of the loop nest to a coordinate of the iteration vector.

3.3 Execution Environment, Final Semantics of our Mini Language

We now present the semantic rules of our annotated program where the initial statement, and each **if** and **while** statements have been prefixed with new fresh variables that constitute our *iteration vector*.

In our semantics, states σ are composed of:

- An environment μ that maps variables to values as well as the last iteration vector (instance) that wrote this variable: μ : Vars → Z × (Name × Z)ⁿ;
- The current value of the iteration vector $\vec{\kappa} \in (\text{Name } \times \mathbb{Z})^n$.

Remark. The Name part of the iteration vector is here to handle imperfect loop nests and in particular it is used to tell $[\langle \kappa_0, 3 \rangle, \langle \kappa_1, 1 \rangle]$ and $[\langle \kappa_0, 3 \rangle, \langle \kappa_2, 1 \rangle]$ apart.

The effect of each statement (in Sexp) is to update the current μ according to classical small-steps operational semantics while storing the current value of the iteration vector; and to update the current iteration vector. We use two auxiliary functions upd and inc. Let $\sigma = (\mu, \vec{\kappa})$, then:

- upd(σ, κ_i, n) returns a copy of σ where κ_i is appended to κ and set to n if κ_i is not already a component of κ, otherwise does nothing.
- incr(σ) returns a copy of σ where the current iteration vector κ's rightmost component of the iteration vector has been incremented by one.

We also define $\sigma \setminus n$ that removes the component *n* of the current iteration vector, if it exists.

Figure 5 depicts the semantic rules for basic statements.

Example 4. After the first statement of the program of 4b (begin), the state is ([], $[\langle \kappa_0, 0 \rangle]$). The initialization of i gives the new state: ($[i \mapsto (5, [\langle \kappa_0, 0 \rangle])], [\langle \kappa_0, 1 \rangle]$).

Figure 5. Our semantics 1/3

For while loops, the semantics also mimics the initialization of its counter to 0 the first time we enter the loop, its incrementation at the end of one body execution; and also the removal of this counter at the end of the loop ($\sigma \setminus \kappa_n$ *removes* κ_n). Figure 6 depicts these two rules. Let us recall that in a small-steps semantics, \rightarrow^+ depicts the execution of the body of the loop.

WHT
$$\frac{\langle \sigma, b_0 \rangle \to \text{true}}{\langle \sigma, \kappa_n, 0, s_1 \rangle \to^+ \langle \sigma', \text{skip} \rangle} \frac{\langle \sigma, \kappa_n : \text{while } b_0 \text{ do } s_1 \text{ done }; s \rangle \to}{\langle \text{incr}(\sigma'), \kappa_n : \text{while } b_0 \text{ do } s_1 \text{ done }; s \rangle}$$
WHF
$$\frac{\langle \sigma, b_0 \rangle \to \text{false}}{\langle \sigma, \kappa_n : \text{while } b_0 \text{ do } s_1 \text{ done }; s \rangle \to \langle \text{incr}(\sigma \setminus \kappa_n), s \rangle}$$

Figure 6. Our semantics 2/3 (while)

For ifs, we consider that we have a built-in length function that tells us the number of sub-statements contained in a statement s. The "true" part of the test rule is constructed so that the outermost component of the iteration vector grows from $-\text{length}(c_1)$ to -1; the "false" part makes it grow from 0 to $\text{length}(c_2) - 1$. Our operations continue to be uniquely numbered. Figure 7 depicts these two rules.

$$\operatorname{IT} \frac{\langle \sigma, b_0 \rangle \to \operatorname{true} \quad \langle \operatorname{upd}(\sigma, \kappa_n, -\operatorname{length}(s_1)), s_1 \rangle \to^+ \langle \sigma', \operatorname{skip} \rangle}{\langle \sigma, \kappa_n : \operatorname{if} b_0 \operatorname{then} s_1 \operatorname{else} s_2 \operatorname{fi}; s \rangle \to \langle \operatorname{incr}(\sigma' \setminus \kappa_n); s \rangle}$$
$$\operatorname{IF} \frac{\langle \sigma, b_0 \rangle \to \operatorname{false} \quad \langle \operatorname{upd}(\sigma, \kappa_n, 0), s_2 \rangle \to^+ \langle \sigma', \operatorname{skip} \rangle}{\langle \sigma, \kappa_n : \operatorname{if} b_0 \operatorname{then} s_1 \operatorname{else} s_2 \operatorname{fi}; s \rangle \to \langle \operatorname{incr}(\sigma' \setminus \kappa_n), s \rangle}$$

3.4 Traces

We define traces of general programs based on our semantics.

Definition 1 (trace on states). A *trace on states* Σ is a sequence of pairs of the form (state, statement) $\langle \sigma_0, c_0 \rangle \rightarrow \langle \sigma_1, c_1 \rangle \rightarrow \ldots$ An *initial trace* is a trace which begins from the empty state.

All the memory accesses are completely deterministic, hence there exists one unique initial trace. This leads to the following remark. *Remark.* There is a one-to-one mapping between iteration vectors and states.

Therefore, we will from now on work directly on operations rather than states. Indeed, since an operation *o* is the pair $\langle s, t \rangle$ we can retrieve the corresponding state from *t* if necessary according to the previous remark.

Definition 2 (trace on operations). A *trace on operations O* is a sequence of operations $o_1 \rightarrow o_2 \rightarrow \cdots$. An *initial trace* is a trace which begins from the trivial (empty) iteration vector.

Remark. From now on, the term *trace* will always refer to *trace on operations* unless stated otherwise.

Definition 3 (reachability/validity). An operation $\langle s_1, t \rangle$ is *valid* if and only if there exists an initial trace $O = \{o_i\}_{i \in \mathbb{N}}$ such that there exists o_0 such that $o_0 = \langle s_1, t \rangle$.

Definition 4 (happens-before: <). There exists a natural order < on operations, called *happens-before*. $\langle s_1, t_1 \rangle < \langle s_2, t_2 \rangle$ if and only if there is one trace such that there exists i_1 and i_2 such that $o_{i_1} \rightarrow^+ o_{i_2}$ and $t_1 = \text{Vec}(o_{i_1})$ and $t_2 = \text{Vec}(o_{i_2})$ where $\text{Vec}(o_i)$ denotes the second component of the pair $o_i = \langle s_i, t_i \rangle$.

Prop 1 (strict order). Happens-before *as defined above is a strict order.*

4 Dependencies for General Programs

The semantics allows defining the key notion of dependency in a general context. Our program traces now contain all elements to define the dependencies: a notion of *ordered time*, which is induced by the succession of states in a trace (including our iteration vectors), and all information to define a *last write* notion with respect to a given state or operation.

Definition 5 (rvars). Let $o = \langle s, t \rangle$ be an operation, the set of variables that *s* needs to read at time *t* is called rvars(*o*).

Definition 6 (wvars). Let $o = \langle s, t \rangle$ be an operation, the set of variables that *s* will write at time *t* is called wvars(*o*). wvars(*o*) is either a singleton or the empty set.

Example 5. Let us consider the operation defined by o = (a[i] := a[i - 1] + a[i] + 1, t). Let us assume that at time t the variable i is equal to 1 (This information is accessible since for t we can recover the whole state corresponding to t and therefore access the content of the memory at this state). Then rvars(o) = { a[0], a[1] } and wvars(o) = { a[1] }.

Definition 7 (Last write). Given an initial trace *O* and an operation o_{i_2} which belongs to *O*, the function last returns the operation o_{i_1} (which belongs to *O*) that last wrote the cell containing the variable *v* before o_{i_2} reads it. The function last satisfies the following formula:

$$\exists i_1, o_{i_1} = last_{O, o_{i_2}}(v) \in O$$

$$\land \forall i, i_1 < i < i_2, wvars(o_{i_1}) \neq \{v\}$$

Figure 8. Direct (dashed) and indirect (dotted, obtained by transitive closure) data dependencies of operation *o*₅.

Example 6. In 3b, consider statement s_4 , on line 4. The operation $\langle s_4, [\langle \kappa_0, 2 \rangle, \langle \kappa_1, 0 \rangle] \rangle$ writes in cell c[1] and needs to read c[0] which was last wrote by $\langle s_1, [\langle \kappa_0, 0 \rangle] \rangle$.

Definition 8 (Direct Data Dependencies). Let $o_2 = \langle s_2, t_2 \rangle$ be an operation, o_2 directly depends on operation $o_1 = \langle s_1, t_1 \rangle$ if there exists $v \in rvars(o_2) \cup wvars(o_2)$ such that $o_1 \in last_{o_2}(v)$. It is denoted by $o_1 \rightsquigarrow o_2$.

Definition 9 (Data Dependencies). Operation o_2 depends on operation o_1 if and only if $o_1 \sim^+ o_2$, where \sim^+ is the transitive closure of \sim .

Definition 10 (Most Recent Direct Data Dependencies). Let $o_2 = \langle s_2, t_2 \rangle$ be an operation, and *D* the set of operations on which o_2 directly depends. The most recent operation on which o_2 depends is $o_1 = \max_{<} D$. It is denoted by $o_1 \rightarrow o_2$.

Prop 2. The most recent dependency of an operation can be either computed from the set of all dependencies or from the set of direct dependencies. In other words,

$$\max_{a} \rightarrow = \max_{a} \rightarrow^{+}$$

Proof. The paths appended by the transitive closure are all about iterations smaller (with respect to the lexicographic order) than the ones originally present in the relation \sim . Hence, the computation of the max on the transitive closure leads to the same result.

Remark. The reason why we keep a clear distinction between direct and most recent direct data dependency is that the transitive closure of \rightarrow is not the same as the transitive closure of \sim (which is the full dependency graph), as can be seen in Example 7.

Remark. The notion of most recent dependency will parallel the definition of K (as defined in Section 2) as it will be exposed in Proposition 3.

Example 7 (Dependencies of an operation). Consider the sequence of operations o_0 to o_5 depicted in Figure 8. The sequentiality is represented with dashed arrows. The direct dependencies between these operations are represented with plain arrows. o_5 , directly depends on o_1 and o_3 , both being represented with simply dashed circles. The dotted circles denotes indirect data dependencies of o_5 , obtained by the transitive closure \sim ⁺. In Figure 9, the most recent direct dependence of o_5 is o_3 , noted with double dashed red circle.

Figure 9. Most Recent Direct Data Dependency of *o*₅.

5 Semantic-Driven Dependency Analysis

The semantic based reformulation of dependencies seamlessly extends the possibility for analysing programs that are not written as canonical affine loop nests. In this section, we first show that our formulation gives the same notion when the behavior of a program matches that of an affine loop nest, and express a new *Semantic-Driven Dependency Analysis* based on this result. Then we describe how our analysis applies to covertly-regular programs: programs that do not exactly correspond to affine loops, but still exhibit a regular behavior expressible within the polyhedral model.

5.1 Equivalence on Regular Polyhedral Programs

In this section we prove that, when considering regular programs with respect to the polyhedral model, our approach is strictly equivalent to the one presented in Feautrier's original paper [5]. Let P be a regular program and P' the same program rewritten with while loops in the most straightforward fashion.

That is,

is rewritten to the following "pseudo polyhedral" program:

A complication at this point is that what has been presented here does not exactly match with the presentation given in the seminal paper [5] on array dataflow analysis. Hence, we need to make a bridge between the loop counters used as iteration vectors in the original paper and our iteration vectors. The following example explains how this *convert* function is computed on a simple program.

Example 8. Let's compute the function convert on the Array filling example of Figure 3, which we recall here:

1 κ₀:begin
2 c[0] := 0; (* s1 *)
3 i := 1;
4 κ₁:while i <= n do
5 c[i] := c[i-1] + 1; (* s2 *)
6 i := i + 1;
7 done
8 end</pre>

The key point is to express the relation which describes the transition between two consecutive iterations of the loop: that is the state of the loop at iteration k and the state of the loop at iteration k + 1. Let us denote \mathcal{R} this relation. One execution of the loop content can be described as:

$$(\kappa_0, \kappa_1, i) \mathcal{R} (\kappa_0, \kappa_1 + 2, i + 1).$$

The relation describes a transition in Presburger arithmetic, which means that its transitive closure is exactly computable. Moreover, we know that when the loop is initialized the following is true:

$$(\kappa_0, \kappa_1, i) = (0, 0, 1).$$

Hence, we can derive the exact expression of the convert *function in this example.*

$$\kappa_1 = 1 + 2(i - 1).$$

This function is the bridge that we want to create between our two approaches.

Prop 3. Let $o_1 = \langle s_1, t_1 \rangle$ and $o_2 = \langle s_2, t_2 \rangle$ be two operations in an initial trace O. Then,

$$o_1 \twoheadrightarrow o_2 \Leftrightarrow K_{s_1,s_2}(\text{convert}(t_2)) = \text{convert}(t_1)$$

where convert is the function that converts our iteration vector into the iteration vector introduced in the original paper [5].

Proof. The existence of the convert function will be assured by Proposition 5. In this proof, we will show that if $o_1 \rightarrow o_2$ then the conditions C_1 , C_2 and C_3 are satisfied.

We need to prove the two directions of the equivalence. Since similar arguments can be used for both directions we only prove the left-to-right direction.

- C_1 : The construction of \rightarrow guarantees that o_1 produces a value for o_2 or wrote the same cell as o_2 . This means that the accesses in s_1 and s_2 are on the same cell. The index of that cell is an affine function of the loop counters, which is independent of the use of the convert function.
- C_2 : The definition of the function last guarantees that o_1 happens before o_2 . And since the convert function preserves the lexicographic order, we are sure that convert $(t_1) \triangleleft convert(t_2)$
- C_3 : o_1 belongs to the initial trace, therefore, the statement s_1 happens during a valid iteration.

Moreover, the definition of last guarantees that o_1 is the last operation before o_2 that produces a value for o_2 or writes the same cell as o_2 . Therefore, o_1 is the last operation on which o_2 depends. **Example 9.** On the previous example, let $s_1 : c[0] := 0$ and $s_2 : c[i] := c[i-1]+1$. We search t_1, t_2 instantiations of (κ_0, κ_1) such that $o_1 \rightarrow o_2$. The systems of constraints is constructed with $C_1 : 0 = i - 1$, and $C_3 = true$ (s_1 is always valid). For C_2 , we need to transform the constraint $(\kappa_0) < (\kappa_0, \kappa_1)$. Since κ_0 has no equivalent in Feautrier's model convert $(\kappa_0) = []$ (the empty vector), hence, C_2 becomes [] < [1 + 2(i - 1)], which is true for all values of *i*, thus $C_2 = true$. Finally, Q_{s_1,s_2} has a unique constraint 0 = i - 1, equivalent to i = 1. The maximum of this set, K, is also this unique point. After applying the convert function $\kappa_1 = 1 + 2(i - 1)$ we finally get the final result $\langle s_1, [\langle \kappa_0, 0 \rangle] \rangle \rightarrow \langle s_2, [\langle \kappa_0, 0 \rangle, \langle \kappa_1, 1 \rangle] \rangle$.

Prop 4. Let $o_1 = \langle s_1, t_1 \rangle$ and $o_2 = \langle s_2, t_2 \rangle$ be two operations. Then,

$$o_1 \rightsquigarrow^+ o_2 \Leftrightarrow \mathsf{convert}(t_1) \in Q_{s_1,s_2}(\mathsf{convert}(t_2))$$

where convert is the function that converts our iteration vector into the iteration vector introduced in the original paper [5].

Proof. The same proof as for Proposition 3 holds. The only difference is that since we take all direct dependencies and the transitive closure we indeed get all the dependencies. □

This equivalence proves that our formalization includes the polyhedral model and in this case (for loops rewritten as while loops) our system can harness the classical polyhedral computations. We thus reached our first goal, which is to be able to *semantically* capture the key notion of *dependency* and being able to compute it.

The decision process of finding the set of dependencies of a given program thus relies on the ability of effectively computing this convert function. We are thus searching for a relation between the variables of the program which implies a *one-to-one* relation between the iteration vector and the indices of array accesses.

There is an abundant literature on invariant generation for general imperative programs (a survey [8] is available on the subject), and the computation of transitive closures of numerical relations.

In the general case, the transitive closure of an affine relation is not computable, however, there exists sub-classes that are known to be exactly computable. There exist an algorithm [?] that compute over-approximations of transitive closures of *quasi-affine* relations (a more general family of relations that encompass affine relations). Moreover, it also returns a boolean value that tells whether this transitive closure is exact.

Prop 5. If a relation is a translation (from the point of view of Presburger arithmetic), its transitive closure is computable.

Proof. For instance, the work by Verdoolaege et al. [?]. \Box

Thus, as long as we are dealing with regular polyhedral programs our model is decidable because our notions as well as those in the original paper [5] coincide.

Remark. Proposition 3 and Proposition 5 give us a decision procedure to test dependency between two given operations for our model. However, in the case where convert is invertible we do not only have a decision procedure but the full symbolic graph of dependencies. Since, in our setting of this section, it is invertible (convert is a translation), the symbolic graph of dependencies can also be expressed, computed and stored when we analyse a pseudo polyhedral program with while loops.

Once we have the relations between the artificial variables that were introduced and the variables appearing in the program we can express our iteration vector as linear combinations of the variables of the program.

5.2 Covertly-Regular Polyhedral Programs

Our analysis also extends to programs with while loops that are not straightforward translations of for loops. We are also interested in capturing programs with affine control that are not necessarily written as affine while loops. A possible example of such case is some kind of state machine with affine transitions. The programmer may decide to write such computation in a way that does not syntactically match affine loops, or a different pass in the compiler may strip away syntactic elements that are necessary to (syntactically) view them as affine loops.

Our analysis may be directly applied to such programs, and provide exact dependency information. However, the convert function that connects the iteration variables to syntactic elements can be difficult to find. For instance, an affine state machine with multiple variables – which may correspond to multi-dimensional loops – would require invariants involving polynomials in general.

We propose an algorithm that reintroduces structure to the programs such that computing the convert function becomes easier. We also give a precise characterization of the class of programs "equivalent" to polyhedral programs, which we call covertly-regular programs.

Prop 6. A polyhedral program (i.e., a loop nest) can be represented as

$A\vec{i} + \vec{c} \le 0$

where A is a lower-triangular matrix with ones on the diagonal, \vec{i} is the vector whose coordinates are the loop counters, and \vec{c} is a vector of constants expressions that may contain structure parameters.

Proof. A polyhedral program is a **for** loop nest. Without loss of generality we can assume that all loop counters are lower-bounded by 0, if they were not we would apply a translation on the iteration range. Moreover, the upper-bound of a loop counter cannot be a function of loop counters deeper in the

loop nest. Hence, the bound on the loop counters can be written as $A\vec{i} + \vec{c} \leq 0$ where *A* is a lower-triangular matrix with ones on the diagonal, \vec{i} is the vector whose coordinates are the loop counters in the order as they appear in the loop nest, and \vec{c} is a vector of constants.

From now on, we will denote a polyhedral program *P* by a triple $\langle A, \vec{i}, \vec{c} \rangle$.

Definition 11 (Covertly regular polyhedral program). A covertly regular program $\langle A, \vec{i}, \vec{c} \rangle$ is such that there exists an orthogonal matrix *O* with det(*O*) = 1, such that $\langle OAO^{-1}, O\vec{i}, O\vec{c} \rangle$ is a regular program.

Remark. The change of basis affect the whole program including arrays accesses.

Remark. Effectively computing such a base changing is in general undecidable. However, in the case of covertly regular programs, we might expect to be in practise able to decide if a given program is covertly regular or not, because transition matrices are in practice not too complex. Of course, such an affirmation needs to be experimentally validated. Such an experimentation is left for future work.

5.3 Conclusion

This section exposed how we could cover the exact computation of dependencies both in the regular and covertly regular cases in the case where the basis change is exactly computable. This is a first step to relax the initial syntactic restrictions of the polyhedral model and this enables a new definition of (covertly) regular programs on which the exact computation of dependencies is expressible and coincides with our new semantic definition of dependencies.

6 Approximate Polyhedral Model for General Imperative Programs

Irregular programs have complex control and non-affine accesses to arrays. In this section we propose to address the problem of non polyhedral control. Non affine accesses are left for future work.

In the previous sections, the key characterization is that the relation linking the program variables (including our annotation) was (in the favorable case) exactly computable. For general programs, we will rely on an over-approximation of this relation.

6.1 Dependence Analysis for Non-Affine Control

Let us recall the result of Proposition 3: if we are able to link our iteration vectors to the scalar variables of the program with an invertible convert function $\kappa_i = convert_i(i, j, k)$, then we can exactly compute the dependencies of a given program. A first remark is that instead of computing the sets *K* or *Q* with initial variables, we can equivalently write the equivalent equations on κ_i variables, and add the definition of convert as additional constraints, as is illustrated in Example 10.

Example 10. On the Array filling example we obtained C_1 : 0 = i - 1, C_2 : $(\kappa_0) \prec (\kappa_0, \kappa_1)$, and $C_3 = true$. Instead of replacing κ_i with their image by convert, we can solve the same constraint system augmented with the constraint $\kappa_1 = 1 + 2(i - 1)$. Now the set Q'_{s_1,s_2} is a polyhedron on i and the κ_i variables whose projection on i gives the same result $Q_{s_1,s_2} = \{i = 0\}$ as in Example 9.

Now that we have work on general programs, we do not have a convert function any more, we thus compute an over-approximation of the relationship between the scalar variables of the programs and the κ_i variables.

Definition 12. Let $P_{s_1}(\vec{i}, \vec{\kappa})$ (resp. $P_{s_2}(\vec{i}, \vec{\kappa})$) be polyhedral invariants at statement s_1 (resp. s_2). Let us denote by cons(P) the set of constraints of P. Let us define $Q'_{s_1,s_2} = C_1 \cup C_2 \cup cons(P_{s_1}) \cup cons(P_{s_2})$ the union of C_1 and C_2 constraints and these over-approximations and Q^{\sharp} is the projection on the κ_i variables.

Prop 7. Let $o_1 = \langle s_1, t_1 \rangle$ and $o_2 = \langle s_2, t_2 \rangle$ be two operations in an initial trace O. Then,

$$o_1 \rightsquigarrow^+ o_2 \Longrightarrow t_2 \in Q_{s_1,s_2}^{\sharp}(t_1)$$

Proof. As $cons(P_{s_1})$ is an over-approximation of C_3 (s_1 should be a valid iteration), and $cons(P_{s_2}) \cup C_2$ is an over-approximation of C_2 (happens-before), all initial dependencies satisfy Q^{\sharp} .

Remark. An important issue here is that we do not have any result about *the most recent dependence* (*K*) since computing the lexicographic maximum of Q^{\sharp} may led to picking a spurious dependency.

As we already mentioned in Section 5.1, computing polyhedral over-approximations can be done by various methods including abstract interpretation. The precision of our analysis will thus rely on the precision of the underlying invariant generator. In the case of regular or covertly regular programs, if the invariant generator gives us the most precise invariants, then we will recover the result of Proposition 3 and Proposition 4 (equivalence).

Example 11. *Let us consider the following example:*

A good invariant generator would enable us to find that s_3 does not depend on any iteration of s_1 since its corresponding invariant is empty. However, any over-approximation P_{s_1} is safe, and we would find out that s_3 depends on s_1 for some values of scalar variables satisfying $cons(P_{s_1})$, thus compute spurious dependencies.

6.2 Work in Progress: Dealing with Non-Affine Accesses

To deal with non-affine accesses, we might find inspiration from the recently proposed non-polyhedral dependency analysis [6], which uses a variant of the Handelman's algorithm for solving multivariate polynomials. The abundant literature on linear relaxations of polynomials constraints has been recently been put to the attention of the program verification community that now uses it to compute overapproximations [12, 16] that could be useful for solving our non-linear set of constraints. However we should be careful about their complexity in practice.

7 Related Work

The array dataflow analysis [5] and the Omega test [13] proposed exact dependency analysis for loops with affine controls and array accesses. Both of these work rely on the ability to characterize the three conditions that define dependency (recall Section 2.2) as affine functions of syntax elements in the source program—loop iterators. The semantics of the target language are abstracted away and are assumed to provide the required properties. In contrast, our work formulates the dependency analysis based on the semantics, and the connection to syntax elements is later established through the convert function or its approximation. This provides additional flexibility on how the programmer can express their computation. For instance, while loops that can be rewritten as for loops are seamlessly handled as we have shown in Section 5.1.

Polly [9] performs polyhedral optimizations to LLVM-IR, which is a low-level IR without high-level information such as loop iterators. The *semantic polyhedral regions* in a program are identified by searching for a *single induction variable* (with affine lower bounds and upper bounds) for each loop. Combined with additional analyses and transformations in LLVM, Polly can recognize program regions that are syntactically far from the canonical polyhedral loops in the original high-level specification. In the context of our work, the analysis in Polly can be viewed as a low-level version of our *covertly regular* loops detection without loop instrumentation. Our specificity is to fully characterize these semantically polyhedral loops and also to leave room for handling non-polyhedral programs through approximations of the convert function.

The original exact dependency analyses were later extended to expand the scope of the analysis, including while loops, non-affine **if** guards, and non-affine array accesses [1, 3, 14, 18]. In Fuzzy Array Dataflow Analysis [1], the non-affine conditions are expressed as predicates encoded with additional parameters, whereas the extension to the Omega test [14] express them with uninterpreted function symbols. Exact analysis is possible in some cases, but these extensions require runtime checks or over-approximations in general.

These extensions treat while loops as unbounded for loops with a predicate that defines the exit condition [1, 3, 14]. The unbounded for loop uses an iterator that is not in the original program, which is analogous to the iteration variables in our work. There are two key differences: (i) we use iteration variables uniformly to both for and while loops, and (ii) we (attempt to) compute connections to syntax elements to express dependencies in terms of integer variables in the source program. For instance, the while loop in Example 2 is viewed as:

1 c[0] := 0; 2 i := 1; 3 for t from 0 4 c[i] := c[i-1] + 1; 5 i := i + 1;

where the variable i is treated as data, and all array accesses are now data-dependent. Our work identifies the relation between i and t, linking the variable i to the iteration count of the while loop.

Alphabets [15] is an equational language that can be viewed as an intermediate representation for polyhedral compilers. The language supports while loops in a manner similar to other work [1, 3, 14]: unbounded domain with exit condition. The crucial difference¹ is that the dependencies are expressed as affine functions of the domain indices, including the unbounded domain corresponding to while loops. In other words, there are only (semantic) iteration variables in the language. A potential application of our analysis is to construct Alphabets representations of programs including while loops.

Apollo [17] is a framework for runtime optimization that detects (affine) regularity in program behavior and applies polyhedral optimizations, speculating that the regularity persists. Runtime analysis enables code regions that cannot be determined to be polyhedral at compile-time to be found and optimized. Our work shares some similarities with the dynamically polyhedral programs targeted by Apollo. The main difference is that we target statically regular programs, but with more flexibility on how the program is written.

8 Conclusion

In this paper we proposed a new semantic formalization of the key analysis of the polyhedral literature, namely *Array* *Dataflow Analysis.* We formalized the notion of dependency in a semantic fashion and showed the relevance of this notion by demonstrating its applicability to the traditional syntactic polyhedral programs as well as to covertly regular programs. We also proposed an approximated computation of dependencies in the general case of non-regular control flows.

Future work includes extensions of our analyses for more general programs including non-affine accesses and more complex data structures such as trees. Based on a proper definition of our general approximated dependence analysis, we will then be able to revisit and extend other classical polyhedral activities such as loop transformations and code generation to allow for optimization and parallelization of programs with while loops and loosened control structures.

References

- Denis Barthou, Jean-François Collard, and Paul Feautrier. 1997. Fuzzy Array Dataflow Analysis. *J. Parallel and Distrib. Comput.* 40, 2 (1997), 210 – 226. https://doi.org/10.1006/jpdc.1996.1261
- [2] Cédric Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier Than You Think. In *IEEE International Conference on Parallel* Architectures and Compilation Techniques (PACT'04). IEEE Computer Society, 7–16. https://hal.archives-ouvertes.fr/hal-00017260
- [3] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul. 2010. The Polyhedral Model is More Widely Applicable Than You Think. In Proceedings of the 19th Joint European Conference on Theory and Practice of Software, International Conference on Compiler Construction (CC'10) (CC'10/ETAPS'10). 283–303.
- [4] Paul Feautrier. 1988. Parametric Integer Programming. RAIRO Recherche Operationnelle 22 (09 1988).
- [5] Paul Feautrier. 1991. Dataflow analysis of array and scalar references. International Journal of Parallel Programming 20, 1 (1991), 23–53.
- [6] Paul Feautrier. 2015. The Power of Polynomials. In In Proceedings of 5th International Workshop on Polyhedral Compilation Techniques (IMPACT'15).
- [7] Paul Feautrier and Christian Lengauer. 2011. The Polyhedron Model. In Encyclopedia of Parallel Programming, David Padua (Ed.). Springer.
- [8] Laure Gonnord and Peter Schrammel. 2014. Abstract Acceleration in Linear Relation Analysis. *Science of Computer Programming* 93, part B, 125 - 153 (2014), 125 - 153. https://doi.org/10.1016/j.scico.2013.09.016 Author version : http://hal.inria.fr/hal-00787212/en.
- [9] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. Polly - performing polyhedral optimizations on a low-level intermediate representation. *Parallel Processing Letters* 22, 04 (2012), 1250010–1– 1250010–28.
- [10] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. 2009. SPEED: Precise and Efficient Static Estimation of Program Computational Complexity. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '09). ACM, New York, NY, USA, 127–139. https://doi.org/10.1145/1480881.1480898
- [11] Claire Maiza, Pascal Raymond, Catherine Parent-Vigouroux, Armelle Bonenfant, Fabienne Carrier, Hugues Cassé, Philippe Cuenot, Denis Claraz, Nicolas Halbwachs, Erwan Jahier, et al. 2017. The W-SEPT Project: Towards Semantic-Aware WCET Estimation. In OASIcs-OpenAccess Series in Informatics, Vol. 57.
- [12] Alexandre Maréchal, Alexis Fouilhé, Tim King, David Monniaux, and Michaël Périn. 2016. Polyhedral Approximation of Multivariate Polynomials Using Handelman's Theorem. In Verification, Model Checking, and Abstract Interpretation (VMCAI) (Lecture Notes in Computer Science), Barbara Jobstmann and K. Rustan M. Leino (Eds.), Vol. 9583. Springer Verlag, 166–184. https://doi.org/10.1007/978-3-662-49122-5_

¹Alphabets can express such computations as data-dependent dependencies like other work, but this is not the default/intended use in Alphabets.

Semantic Array Dataflow Analysis

8 arXiv:hal-01223362

- [13] W. Pugh. 1991. The Omega test: a fast and practical integer programming algorithm for dependence analysis. In 1991 ACM/IEEE Conference on Supercomputing (SC '91). 4–13. https://doi.org/10.1145/125826. 125848
- [14] William Pugh and David Wonnacott. 1996. Non-Linear Array Dependence Analysis. 1–14. https://doi.org/10.1007/978-1-4615-2315-4_1
- [15] Sanjay Rajopadhye, Samik Gupta, and Daegon Kim. 2011. Alphabets: An Extended Polyhedral Equational Language. In Proceedings of the IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW'11). 656–664. https://doi.org/10. 1109/IPDPS.2011.206
- [16] Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan. 2016. Validating Numerical Semidefinite Programming Solvers for Polynomial Invariants. In *Static Analysis Symposium (SAS'16)*, Xavier Rival (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 424–446.
- [17] Aravind Sukumaran-Rajam and Philippe Clauss. 2015. The Polyhedral Model of Nonlinear Loops. ACM Transactions on Architecure and Code Optimization 12, 4, Article 48 (Dec. 2015), 27 pages. https://doi.org/10. 1145/2838734
- [18] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. 2013. On Demand Parametric Array Dataflow Analysis. In *Proceedings of the 3rd International Workshop on Polyhedral Compilation Techniques*, Armin Größlinger and Louis-Noël Pouchet (Eds.). Berlin, Germany, 23–36.