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Abstract
This paper revisits the polyhedral model’s key analysis, de-

pendency analysis. The semantic formulation we propose

allows a new definition of the notion of dependency and the

computation of the dependency set. As a side effect, we pro-

pose a general algorithm to compute an over-approximation
of the dependency set of general imperative programs.

We argue that this new formalization will later allow for

a new vision of the polyhedral model in terms of semantics,

which will help us fully characterize its expressivity and

applicability. We also believe that abstract semantics will

be the key for designing an approximate abstract model in

order to enhance the applicability of the polyhedral model.

Keywords polyhedral model, operational semantics

1 Introduction
Multi-core processors, and parallel processing in general, are

now broadly used. Their horizon of applications ranges from

mobile platforms to high-performance computing. Allowing

non-expert programmers to harness the parallelism in recent

hardware require significant advances in the entire compila-

tion chain. It also means that the general forms of sequential

programs, e.g., with while loops and data-dependent control
structures, should be amenable to parallelization.

The polyhedral model [7] is a powerful algebraic frame-

work that is at the core of many advances in optimization

and code generation of numerical kernels. One reason of its

success is the practicality of the operations that are expressed

in terms of algebraic computations on affine sets.

One of the major limitations of this model is that it only

applies to programs with regular control and loops with

static bounds. The main issue is that the polyhedral model’s

algorithms are defined with strong assumptions on the shape
∗
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of programs under analysis, which make the underlying

problems decidable. However, checking those requirements

is sometimes not trivial:

• A programmer may have written an algorithm that is

inherently polyhedral in a way that is not compliant

with the syntactic restrictions of the polyhedral model;

• The compiler may have transformed the polyhedral

input program in such a way that the polyhedral struc-

ture does not appear syntactically any more.

We argue that this is an important limitation for further

extending the polyhedral model. In this paper, we propose

to redefine the dataflow analysis based on the operational

semantics of programs. By doing so we claim that we lever-

age the constraints of the previous definitions and increase

the range of applicability of the polyhedral model.

From a general viewpoint, our work lies in the semantic

consolidation of the polyhedral model to allow its extension

with static analysis techniques that opens the door to the

parallelization of irregular programs (i.e., with while loops
and more general data structures such as trees or maps).

A strategic prerequisite for this long-term goal is to pro-

pose a unified formal setting that describes the semantics of

general programs. As a first step for this work, the present

paper proposes a semantic-based description of the array

dataflow analysis [5]. This paper also proposes a precise def-

inition of covertly regular programs for which the classical

algorithms of the polyhedral community are exactly appli-

cable, and a notion of polyhedral approximation for more

general programs.

Overview
This work is a first step towards a clear semantic of the

polyhedral model. The contributions of the paper are:

• A semantic definition of the notion of dependency à
la polyhedral model, on a general imperative language;

• A rephrasing of the classical array dataflow analysis [5]

in our setting, which enables us to recover classical

results from the community;
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• The definition of the notion of covertly-regular pro-
grams for which the polyhedral model algorithms and

tools can be applied as-is;

• A notion of approximated polyhedral model for pro-
grams with non polyhedral control, on which we can

compute an over-approximated set of dependence.

The rest of the paper is organized as follows: Section 2

recalls the notion of data dependency set and its classical

computation in the polyhedral model framework; Section 3

describes our model of program and its semantics enriched

with an extended notion of iteration vector ; Section 4 gives a

semantic-based notion of dependencies for our general class

of programs. Then, Section 5 proves the equivalence of our

definitionwith the initial one on regular polyhedral programs,

enabling us to define the notion of covertly regular polyhedral
programs. Section 6 gives an algorithm to compute an over-

approximation of the dependency set for programs with non-

polyhedral control, opening perspectives to a more general

approximate polyhedral model; Section 7 compares our work

to existing works. Finally, we conclude in Section 8 with

some directions for future work.

2 Background: Array Dataflow Analysis
The seminal paper Array Dataflow Analysis [5] proposed
exact dependency analysis for loops with static and affine

control. In this section, we present an overview of the results

and algorithms of this paper, rephrased with our semantic-

based formalization in view.

Informally, a data dependency between two operations

exists when two operations access to the same memory loca-

tion, with at least one of them being a write. These include

benign dependencies as well as true dependencies, which are

defined based on the notion of most recent write. The pa-

per shows that for affine loops the above can be formulated

with Integer Linear Programming, hence providing an exact

solution, which we recall below.

2.1 Tracking Operations
In order to optimize the operations of a given program, a

typical polyhedral compilation flow computes the instance-

wise and element-wise dependencies. The analysis identifies

dependencies between all operations operating on array as

long as they are within the affine restrictions. Two operations

that do not depend on each other can be parallelized, or at

least, rescheduled in an order different than the lexical order

of the original program. The notion of dependency between

operations is thus central to program transformations.

Those dependencies are expressed by giving a unique

identifier to each operation – an iteration vector – whose

coordinates are loop counters. The first coordinate is the

outermost loop’s counter while the last coordinate is the

(* a and b are n-n matrices and c = ab *)

1 for i from 1 to n

2 for j from 1 to n

3 c[i, j] := 0 (* s1 *)

4 for k from 1 to n

5 c[i, j] := c[i, j] + a[i, k] * b[k, j] (* s2 *)

Figure 1. Product of matrices with a for loop.

innermost loop’s counter. For example, in the listing of Fig-

ure 1 the iteration vector on line 3 is ⟨𝑖, 𝑗⟩ while the iteration
vector on line 5 is ⟨𝑖, 𝑗, 𝑘⟩.

Remark (loop counter). In the context of for loops, the con-

cept of iteration variable is crystal clear since it is the same

as loop counters. However, when dealing with while loops,

the definition is not as clear and is addressed later.

From now on, statements are denoted by 𝑠𝑖 , instantiated
iteration vectors by 𝑡 𝑗 (because such a vector can be seen

as a timestamp) and operations by a pair ⟨𝑠𝑖 , 𝑡 𝑗 ⟩. Note that
two operations can have the same iteration vector, typically

when they are at the same loop level. In order to know which

is before the other a boolean𝑇𝑠1,𝑠2 is set to true if 𝑠1 is before

𝑠2 in the text source program. Intuitively, we define 𝑄𝑠1,𝑠2 (𝑡)
as the set of all the operations involving 𝑠1 that have an

influence on the computation of 𝑠2 at time 𝑡 . And we define

𝐾𝑠1,𝑠2 (𝑡) as the last operation having an influence on the

computation of 𝑠2 at time 𝑡 .

2.2 Computation of Dependencies
We now formally define 𝐾 and 𝑄 , and explain how they are

computed within the context of the polyhedral model. Let us

assume that we are computing values for amatrix𝑀 , and that

we want to compute the operations on which 𝑜2 = ⟨𝑠2, 𝑡2⟩ (an
operation that needs to read values in𝑀) depends. Moreover,

let us assume that 𝑜2 needs to read𝑀 [𝑔(𝑡2)], where 𝑔 is an
affine function of the iteration vector 𝑡2.

However, before we can compute 𝑄𝑠1,𝑠2 (𝑡2) we need to

gather candidates for 𝑠1. We will thus take into account all

operations whose statement is of the form 𝑀 [𝑓 (𝑡1)] := ...

where 𝑓 is an affine access function of the iteration vector.

The research can be restricted to operations that happen
before 𝑠2 in the program flow. The operations on which 𝑠2
depend will then be the union of the operations found with

𝑠1 as their statement.

In order to explicitly define and compute 𝑄 , the following

conditions have to be fulfilled:

𝐶1: the arrays/matrices cells that 𝑠1 and 𝑠2 try to access

should match: 𝑓 (𝑡1) = 𝑔(𝑡2) ;
𝐶2: (𝑠1, 𝑡1) should happen before (𝑠2, 𝑡2) (i.e., 𝑡1 ◁ 𝑡2, or(

(𝑡1 = 𝑡2)∧𝑇𝑠1,𝑠2
)
where◁ is the lexicographic ordering

on vectors and 𝑇 the textual ordering). This condition

is denoted by ⟨𝑠1, 𝑡1⟩ ≺ ⟨𝑠2, 𝑡2⟩
2
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𝐶3 𝑡1 must be a valid iteration (denoted as e(𝑡1) ≥ 0, this

notation will become clear in Example 1.)

Hence, the following definition of 𝑄𝑠1,𝑠2 (𝑡) as:

{ 𝑡 ′ | 𝑓 (𝑡 ′) = 𝑔(𝑡), ⟨𝑠1, 𝑡 ′⟩ ≺ ⟨𝑠2, 𝑡⟩, e(𝑡 ′) ≥ 0 }

and 𝐾𝑠1,𝑠2 (𝑡2) as:
max

◁
𝑄𝑠1,𝑠2 (𝑡2).

Theorem 1 (Dependencies are computable in the polyhedral

model). In the polyhedral model setting (static control), the
set of dependencies of a given operation is computable.

Proof. The proof can be found in the original paper [5]. The

3 conditions above lead to a system of affine constraints

whose lexicographic maximum is then computable by a

Parametrized Integer Linear Programming solver (such as

PIP [4]). □

Example 1 (Computations of dependencies for the matrix

product, shown in Figure 1). This program is made of two
statements: 𝑠1 on line 3 and 𝑠2 on line 5, that both write values
for the array 𝑐 . In order to compute the dependencies we need
to compute 𝑄𝑠1,𝑠1 , 𝑄𝑠1,𝑠2 and 𝑄𝑠2,𝑠2 . The respective 𝐾s will be
computed by taking the lexicographic maximum on the 𝑄s.

Let us start by computing 𝑄𝑠1,𝑠1 . We can see that 𝑠1 does not
need to read any variable. Hence, 𝑄𝑠1,𝑠1 is empty.

Now, let us compute𝑄𝑠1,𝑠2 . Let ⟨𝑖1, 𝑗1⟩ be the iteration vector
of statement 𝑠1 and ⟨𝑖2, 𝑗2, 𝑘2⟩ the iteration vector of statement
𝑠2. We can then express 𝐶1, 𝐶2 and 𝐶3 as affine conditions.
𝐶1 is ⟨𝑖1, 𝑗1⟩ = ⟨𝑖2, 𝑗2⟩. 𝐶2 is ⟨𝑖1, 𝑗1⟩ ◁ ⟨𝑖2, 𝑗2, 𝑘2⟩. And 𝐶3 is
1 ≤ 𝑖, 𝑗 ≤ 𝑛. This leads to 𝑄 (𝑠1, 𝑠2) (⟨𝑖2, 𝑗2, 𝑘2⟩) being equal to:

{ ⟨𝑖1, 𝑗1⟩ | 𝑖1 = 𝑖2 ∧ 𝑗1 = 𝑗2 }.

Lastly, let us compute 𝑄𝑠2,𝑠2 . Let ⟨𝑖2, 𝑗2, 𝑘2⟩ and ⟨𝑖 ′
2
, 𝑗 ′

2
, 𝑘 ′

2
⟩ be

the iteration vectors of statement 𝑠2 at two distinct instants.
All conditions can be expressed as affine conditions: 𝐶1 is
⟨𝑖2, 𝑗2, 𝑘2⟩ = ⟨𝑖 ′

2
, 𝑗 ′

2
, 𝑘 ′

2
⟩,𝐶2 is ⟨𝑖2, 𝑗2, 𝑘2⟩ ◁ ⟨𝑖 ′

2
, 𝑗 ′

2
, 𝑘 ′

2
⟩, and𝐶3 is

1 ≤ 𝑖2, 𝑗2, 𝑘2 ≤ 𝑛. This gives 𝑄 (𝑠2, 𝑠2) (⟨𝑖 ′2, 𝑗 ′2, 𝑘 ′2⟩) as:

{ ⟨𝑖2, 𝑗2, 𝑘2⟩ | 𝑖2 = 𝑖 ′2 ∧ 𝑗2 = 𝑗 ′
2
∧ 𝑘2 < 𝑘

′
2
}.

2.3 Discussion
The analysis led to an efficient algorithm to store and com-

pute (most recent) dependencies when:

• Loop iterators are easily definable and their domain is

easily exactly computable (condition C3);

• Memory accesses are affine functions of loop iterators

(condition C1);

• The happens-before relation is a function of syntax

elements (condition C2).

What we propose in this paper is to relax these assumptions

to rely less on syntactic elements, and to re-formulate the

analysis based on an operational semantics of the language.

3 General Imperative Programs With
Iteration Vectors

For the formalization, we use a variant of the classical (small-

steps) operational semantics of a general imperative lan-

guage with scalars and arrays, where we exhibit the notion of

iteration vector. The syntax of the mini-language is depicted

in Section 3.1, our extension for iteration vectors in Sec-

tion 3.2. The semantics described in Section 3.3 then enables

us to properly define the notion of trace in Section 3.4.

3.1 A Mini Language
The language we propose is a pointer-less imperative lan-

guage with native support for while loops, if statements

as well as arrays of integers (scalars are degenerated arrays

with one cell).

In the grammar depicted in Figure 2, capital letters (𝑋,𝑌, 𝑍 )
are used as placeholders for variable names. 𝑛 represents an

element of N and terms in lowercase are an instance of the

expression rule which shares the same first letter: e.g., 𝑎 · is
an instance of Aexp, 𝑏 · is an instance of Bexp, and so on. The

“𝜅𝑛 :” notation is explained in Section 3.2 and can be safely

ignored at this point.

⟨Aexp⟩ ::= 𝑛 | 𝑎0 ⟨Aop⟩ 𝑎1 | 𝑣0
⟨Aop⟩ ::= ‘+’ | ‘*’ | ‘-’ | ‘/’ | ‘mod’

⟨Bexp⟩ ::= ‘true’ | ‘false’ | !(𝑏0)
| 𝑏0 ⟨Bop⟩ 𝑏1 | 𝑎0 ⟨Cop⟩ 𝑎1

⟨Bop⟩ ::= ‘or’ | ‘and’ | ‘=’

⟨Cop⟩ ::= ‘<=’ | ‘=>’ | ‘<>’ | ‘==’

⟨Vexp⟩ ::= X | X‘[’𝑎0‘]’

⟨Sexp⟩ ::= 𝜅𝑛 ‘:begin’| ‘skip’ | 𝑠0 ‘;’ 𝑠1
| 𝜅𝑛 ‘:if’ 𝑏0 ‘then’ 𝑠0 ‘else’ 𝑠1 ‘fi’
| 𝜅𝑛 ‘:while’ 𝑏0 ‘do’ 𝑠0 ‘done’
| 𝑣0 ‘:=’ 𝑎0

Figure 2. Our Mini-Language: syntax

The grammar itself is permissive and recognizes programs

that are syntactically outside of the scope addressed by the

polyhedral model.

3.2 Semantic Extension: Iteration Variables and
Iteration Vectors for our Language

In the classical polyhedral model, for loops naturally intro-

duce counter variables. These are convenient to number the

operations and use those as labels when investigating their

dependencies. For general programs with tests and while
loops, there is no canonical way to implicitly define iteration

variables. We thus explicitly introduce them in our language

3
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and semantics. This kind of instrumentation is classic in

other static program analyses such as Worst-Case Execution

Time (WCET) analysis [11] or complexity estimation [10].

Fresh iteration variables𝜅𝑖 ∈ Name are created so that oper-
ations are numbered hierarchically, the first level counts the

number of operations at level zero, the second level those at

level one, and so on. The iteration vector is the concatenation

of those variables. The leftmost coordinate is the iteration

variable of the outermost loop and the rightmost coordinate

is the iteration variable of the innermost loop. This allows

sorting operations by their iteration vector, with respect to

the lexicographic order. We illustrate this process with an

example in the following.

Example 2. Figure 3 depicts a simple array filling procedure
with a while loop. We annotated each control statement with
a 𝜅𝑖 . These iteration variables are introduced so as to number
the operations hierarchically.

1 c[0] := 0;

2 i := 1;

3 while i <= n do

4 c[i] := c[i-1] + 1;

5 i := i + 1

6 done

a) Before annotation

1 𝜅0:begin

2 c[0] := 0;

3 i := 1;

4 𝜅1:while i <= n do

5 c[i] := c[i-1] + 1;

6 i := i + 1;

7 done

b) After annotation

Figure 3. Array filling with increasing values

As for if statements, we have to do some extra work in

order to make them compatible with the lexicographic order.

In the annotation step, we only annotate the test itself, the

actual numbering of the sub-statements will be performed

in the semantic rules, as we will later see in Figure 7.

Example 3. Figure 4 shows an example of an if branch
annotation. Only the test itself is annotated.

1 i := 5;

2 while i <> 1 do

3 if i mod 2 == 0

4 i := i / 2

5 else

6 i := 3 * i + 1

7 done

a) Before annotation

1 𝜅0:begin

2 i := 5;

3 𝜅1:while i <> 1

4 𝜅2:if i mod 2 == 0:

5 i := i / 2;

6 else:

7 i := 3 * i+1

8 done

b) After annotation

Figure 4. The Syracuse algorithm

For example, on line 4 of 4b the (uninstantiated) iteration
vector is (𝜅0 𝜅1 𝜅2). When the program is run, on line 4, the

iteration vector will contain the current values of 𝜅0, 𝜅1 and
𝜅2. At the end the iteration vector is

[
⟨𝜅0, 3⟩

]
, because 𝜅2 has

been dropped at the end of the if and 𝜅1 as been dropped at
the end of the while.

The annotation process is straightforward as it appends

𝜅𝑛 just before the construct that goes on one step deeper,

and adds a begin annotation with label 𝜅0 at the beginning

of the program. The semantics described in Section 3.3 takes

such an annotated program as input.

Remark. Our annotation system is different form the usual

notation used in the polyhedral model (the 2𝑛+1 notation [2]),
which may use two dimensions to represent one loop: one

dimension that corresponds to the number of iteration of the

loop and one that would number the internal statements.

However, the reason behind the fact that we use only one

dimension is that we want to be able to map each level of

the loop nest to a coordinate of the iteration vector.

3.3 Execution Environment, Final Semantics of our
Mini Language

We now present the semantic rules of our annotated pro-

gram where the initial statement, and each if and while
statements have been prefixed with new fresh variables that

constitute our iteration vector.
In our semantics, states 𝜎 are composed of:

• An environment 𝜇 that maps variables to values as

well as the last iteration vector (instance) that wrote

this variable: 𝜇 : Vars → Z × (Name × Z)𝑛 ;
• The current value of the iteration vector ®𝜅 ∈ (Name ×
Z)𝑛 .

Remark. The Name part of the iteration vector is here to

handle imperfect loop nests and in particular it is used to

tell

[
⟨𝜅0, 3⟩, ⟨𝜅1, 1⟩

]
and

[
⟨𝜅0, 3⟩, ⟨𝜅2, 1⟩

]
apart.

The effect of each statement (in Sexp) is to update the

current 𝜇 according to classical small-steps operational se-

mantics while storing the current value of the iteration vec-

tor ; and to update the current iteration vector. We use two

auxiliary functions upd and inc. Let 𝜎 = (𝜇, ®𝜅), then:
• upd(𝜎, 𝜅𝑖 , 𝑛) returns a copy of 𝜎 where 𝜅𝑖 is appended

to ®𝜅 and set to 𝑛 if 𝜅𝑖 is not already a component of ®𝜅,
otherwise does nothing.

• incr(𝜎) returns a copy of 𝜎 where the current iteration

vector ®𝜅’s rightmost component of the iteration vector

has been incremented by one.

We also define 𝜎 \ 𝑛 that removes the component 𝑛 of the

current iteration vector, if it exists.

Figure 5 depicts the semantic rules for basic statements.

Example 4. After the first statement of the program of 4b
(begin), the state is

( []
,
[
⟨𝜅0, 0⟩

] )
. The initialization of 𝑖 gives

the new state:
( [
𝑖 ↦→ (5, [⟨𝜅0, 0⟩])

]
,
[
⟨𝜅0, 1⟩

] )
.

4
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skip

⟨𝜎, skip⟩
begin

⟨𝜎,𝜅0 : begin; 𝑠 ⟩ → ⟨upd(𝜎,𝜅0, 0), 𝑠 ⟩
Assign

⟨𝜎, 𝑣 := 𝑒 ; 𝑠 ⟩ → ⟨incr(𝜎 [𝑣 := 𝑒 ]), 𝑠 ⟩

Figure 5. Our semantics 1/3

For while loops, the semantics also mimics the initializa-

tion of its counter to 0 the first time we enter the loop, its

incrementation at the end of one body execution; and also

the removal of this counter at the end of the loop (𝜎 \ 𝜅𝑛
removes 𝜅𝑛). Figure 6 depicts these two rules. Let us recall

that in a small-steps semantics, →+
depicts the execution of

the body of the loop.

WhT

⟨𝜎,𝑏0 ⟩ → true ⟨upd(𝜎,𝜅𝑛, 0), 𝑠1 ⟩ →+ ⟨𝜎′, skip⟩
⟨𝜎,𝜅𝑛 : while 𝑏0 do 𝑠1 done ; 𝑠 ⟩ →

⟨incr(𝜎′), 𝜅𝑛 : while 𝑏0 do 𝑠1 done ; 𝑠 ⟩

WhF

⟨𝜎,𝑏0 ⟩ → false

⟨𝜎,𝜅𝑛 : while 𝑏0 do 𝑠1 done ; 𝑠 ⟩ → ⟨incr(𝜎 \ 𝜅𝑛), 𝑠 ⟩

Figure 6. Our semantics 2/3 (while)

For ifs, we consider that we have a built-in length func-

tion that tells us the number of sub-statements contained in a

statement 𝑠 . The “true” part of the test rule is constructed so

that the outermost component of the iteration vector grows

from −length(𝑐1) to −1; the “false” part makes it grow from

0 to length(𝑐2) − 1. Our operations continue to be uniquely

numbered. Figure 7 depicts these two rules.

IT

⟨𝜎,𝑏0 ⟩ → true ⟨upd(𝜎,𝜅𝑛,−length(𝑠1)), 𝑠1 ⟩ →+ ⟨𝜎′, skip⟩
⟨𝜎,𝜅𝑛 : if 𝑏0 then 𝑠1 else 𝑠2 fi; 𝑠 ⟩ → ⟨incr(𝜎′ \ 𝜅𝑛) ; 𝑠 ⟩

IF

⟨𝜎,𝑏0 ⟩ → false ⟨upd(𝜎,𝜅𝑛, 0), 𝑠2 ⟩ →+ ⟨𝜎′, skip⟩
⟨𝜎,𝜅𝑛 : if 𝑏0 then 𝑠1 else 𝑠2 fi; 𝑠 ⟩ → ⟨incr(𝜎′ \ 𝜅𝑛), 𝑠 ⟩

Figure 7. Our semantics 3/3 (if)

3.4 Traces
We define traces of general programs based on our semantics.

Definition 1 (trace on states). A trace on states Σ is a se-

quence of pairs of the form (state, statement) ⟨𝜎0, 𝑐0⟩ →
⟨𝜎1, 𝑐1⟩ → . . . . An initial trace is a trace which begins from

the empty state.

All the memory accesses are completely deterministic,

hence there exists one unique initial trace. This leads to the

following remark.

Remark. There is a one-to-one mapping between iteration

vectors and states.

Therefore, we will from now on work directly on opera-

tions rather than states. Indeed, since an operation 𝑜 is the

pair ⟨𝑠, 𝑡⟩ we can retrieve the corresponding state from 𝑡 if

necessary according to the previous remark.

Definition 2 (trace on operations). A trace on operations 𝑂
is a sequence of operations 𝑜1 → 𝑜2 → · · · . An initial trace
is a trace which begins from the trivial (empty) iteration

vector.

Remark. From now on, the term trace will always refer to
trace on operations unless stated otherwise.

Definition 3 (reachability/validity). An operation ⟨𝑠1, 𝑡⟩ is
valid if and only if there exists an initial trace 𝑂 = {𝑜𝑖 }𝑖∈N
such that there exists 𝑜0 such that 𝑜0 = ⟨𝑠1, 𝑡⟩.
Definition 4 (happens-before: <). There exists a natural or-
der < on operations, called happens-before. ⟨𝑠1, 𝑡1⟩ < ⟨𝑠2, 𝑡2⟩
if and only if there is one trace such that there exists 𝑖1 and

𝑖2 such that 𝑜𝑖1 →+ 𝑜𝑖2 and 𝑡1 = Vec(𝑜𝑖1 ) and 𝑡2 = Vec(𝑜𝑖2 )
where Vec(𝑜𝑖 ) denotes the second component of the pair

𝑜𝑖 = ⟨𝑠𝑖 , 𝑡𝑖⟩.
Prop 1 (strict order). Happens-before as defined above is a
strict order.

4 Dependencies for General Programs
The semantics allows defining the key notion of dependency

in a general context. Our program traces now contain all

elements to define the dependencies: a notion of ordered
time, which is induced by the succession of states in a trace

(including our iteration vectors), and all information to define

a last write notion with respect to a given state or operation.

Definition 5 (rvars). Let 𝑜 = ⟨𝑠, 𝑡⟩ be an operation, the set

of variables that 𝑠 needs to read at time 𝑡 is called rvars(𝑜).
Definition 6 (wvars). Let 𝑜 = ⟨𝑠, 𝑡⟩ be an operation, the

set of variables that 𝑠 will write at time 𝑡 is called wvars(𝑜).
wvars(𝑜) is either a singleton or the empty set.

Example 5. Let us consider the operation defined by 𝑜 =

(𝑎[𝑖] := 𝑎[𝑖 − 1] + 𝑎[𝑖] + 1, 𝑡). Let us assume that at time 𝑡
the variable 𝑖 is equal to 1 (This information is accessible since
for 𝑡 we can recover the whole state corresponding to 𝑡 and
therefore access the content of the memory at this state). Then
rvars(𝑜) = { 𝑎[0], 𝑎[1] } and wvars(𝑜) = { 𝑎[1] }.
Definition 7 (Last write). Given an initial trace 𝑂 and an

operation 𝑜𝑖2 which belongs to 𝑂 , the function last returns

the operation 𝑜𝑖1 (which belongs to 𝑂) that last wrote the

cell containing the variable 𝑣 before 𝑜𝑖2 reads it. The function

last satisfies the following formula:

∃𝑖1, 𝑜𝑖1 = last𝑂,𝑜𝑖
2

(𝑣) ∈ 𝑂
∧ ∀𝑖, 𝑖1 < 𝑖 < 𝑖2, wvars(𝑜𝑖1 ) ≠ {𝑣}

5
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𝑜0 𝑜1 𝑜2 𝑜3 𝑜4 𝑜5

Figure 8. Direct (dashed) and indirect (dotted, obtained by

transitive closure) data dependencies of operation 𝑜5.

Example 6. In 3b, consider statement 𝑠4, on line 4. The op-
eration

〈
𝑠4, [⟨𝜅0, 2⟩, ⟨𝜅1, 0⟩]

〉
writes in cell 𝑐 [1] and needs to

read 𝑐 [0] which was last wrote by
〈
𝑠1, [⟨𝜅0, 0⟩]

〉
.

Definition 8 (Direct Data Dependencies). Let𝑜2 = ⟨𝑠2, 𝑡2⟩ be
an operation, 𝑜2 directly depends on operation 𝑜1 = ⟨𝑠1, 𝑡1⟩
if there exists 𝑣 ∈ rvars(𝑜2) ∪ wvars(𝑜2) such that 𝑜1 ∈
last𝑜2 (𝑣). It is denoted by 𝑜1 ; 𝑜2.

Definition 9 (Data Dependencies). Operation 𝑜2 depends
on operation 𝑜1 if and only if 𝑜1 ;+ 𝑜2, where ;+

is the

transitive closure of;.

Definition 10 (Most Recent Direct Data Dependencies). Let
𝑜2 = ⟨𝑠2, 𝑡2⟩ be an operation, and 𝐷 the set of operations on

which 𝑜2 directly depends. The most recent operation on

which 𝑜2 depends is 𝑜1 = max< 𝐷 . It is denoted by 𝑜1 ↠ 𝑜2.

Prop 2. The most recent dependency of an operation can be
either computed from the set of all dependencies or from the
set of direct dependencies. In other words,

max

◁
; = max

◁
;+

Proof. The paths appended by the transitive closure are all

about iterations smaller (with respect to the lexicographic

order) than the ones originally present in the relation ;.

Hence, the computation of the max on the transitive closure

leads to the same result. □

Remark. The reasonwhywe keep a clear distinction between
direct and most recent direct data dependency is that the

transitive closure of ↠ is not the same as the transitive

closure of; (which is the full dependency graph), as can be

seen in Example 7.

Remark. The notion of most recent dependency will parallel

the definition of 𝐾 (as defined in Section 2) as it will be

exposed in Proposition 3.

Example 7 (Dependencies of an operation). Consider the
sequence of operations 𝑜0 to 𝑜5 depicted in Figure 8. The se-
quentiality is represented with dashed arrows. The direct de-
pendencies between these operations are represented with plain
arrows. 𝑜5, directly depends on 𝑜1 and 𝑜3, both being repre-
sented with simply dashed circles. The dotted circles denotes
indirect data dependencies of 𝑜5, obtained by the transitive
closure;+. In Figure 9, the most recent direct dependence of
𝑜5 is 𝑜3, noted with double dashed red circle.

𝑜0 𝑜1 𝑜2 𝑜3 𝑜4 𝑜5

Figure 9. Most Recent Direct Data Dependency of 𝑜5.

5 Semantic-Driven Dependency Analysis
The semantic based reformulation of dependencies seam-

lessly extends the possibility for analysing programs that

are not written as canonical affine loop nests. In this section,

we first show that our formulation gives the same notion

when the behavior of a program matches that of an affine

loop nest, and express a new Semantic-Driven Dependency
Analysis based on this result. Then we describe how our

analysis applies to covertly-regular programs: programs that

do not exactly correspond to affine loops, but still exhibit a

regular behavior expressible within the polyhedral model.

5.1 Equivalence on Regular Polyhedral Programs
In this section we prove that, when considering regular pro-

grams with respect to the polyhedral model, our approach is

strictly equivalent to the one presented in Feautrier’s origi-

nal paper [5]. Let 𝑃 be a regular program and 𝑃 ′
the same

program rewritten with while loops in the most straightfor-

ward fashion.

That is,

for i from start to finish

(* ... *)

done

is rewritten to the following “pseudo polyhedral” program:

i := start;

while i <= finish

(* ... *)

i = i + 1

done

A complication at this point is that what has been pre-

sented here does not exactly match with the presentation

given in the seminal paper [5] on array dataflow analysis.

Hence, we need to make a bridge between the loop coun-

ters used as iteration vectors in the original paper and our

iteration vectors. The following example explains how this

convert function is computed on a simple program.

Example 8. Let’s compute the function convert on the Array
filling example of Figure 3, which we recall here:

6
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1 𝜅0:begin

2 c[0] := 0; (* s1 *)

3 i := 1;

4 𝜅1:while i <= n do

5 c[i] := c[i-1] + 1; (* s2 *)

6 i := i + 1;

7 done

8 end

The key point is to express the relation which describes the
transition between two consecutive iterations of the loop: that
is the state of the loop at iteration 𝑘 and the state of the loop
at iteration 𝑘 + 1. Let us denote R this relation. One execution
of the loop content can be described as:

(𝜅0, 𝜅1, 𝑖) R (𝜅0, 𝜅1 + 2, 𝑖 + 1) .
The relation describes a transition in Presburger arithmetic,

which means that its transitive closure is exactly computable.
Moreover, we know that when the loop is initialized the follow-
ing is true:

(𝜅0, 𝜅1, 𝑖) = (0, 0, 1).
Hence, we can derive the exact expression of the convert

function in this example.

𝜅1 = 1 + 2(𝑖 − 1) .
This function is the bridge that we want to create between

our two approaches.

Prop 3. Let 𝑜1 = ⟨𝑠1, 𝑡1⟩ and 𝑜2 = ⟨𝑠2, 𝑡2⟩ be two operations
in an initial trace 𝑂 . Then,

𝑜1 ↠ 𝑜2 ⇔ 𝐾𝑠1,𝑠2 (convert(𝑡2)) = convert(𝑡1)
where convert is the function that converts our iteration vector
into the iteration vector introduced in the original paper [5].

Proof. The existence of the convert function will be assured

by Proposition 5. In this proof, we will show that if 𝑜1 ↠ 𝑜2
then the conditions 𝐶1, 𝐶2 and 𝐶3 are satisfied.

We need to prove the two directions of the equivalence.

Since similar arguments can be used for both directions we

only prove the left-to-right direction.

𝐶1 : The construction of↠ guarantees that 𝑜1 produces

a value for 𝑜2 or wrote the same cell as 𝑜2. This means

that the accesses in 𝑠1 and 𝑠2 are on the same cell. The

index of that cell is an affine function of the loop coun-

ters, which is independent of the use of the convert
function.

𝐶2 : The definition of the function last guarantees that

𝑜1 happens before 𝑜2. And since the convert function

preserves the lexicographic order, we are sure that

convert(𝑡1) ◁ convert(𝑡2)
𝐶3 : 𝑜1 belongs to the initial trace, therefore, the state-

ment 𝑠1 happens during a valid iteration.

Moreover, the definition of last guarantees that 𝑜1 is

the last operation before 𝑜2 that produces a value for 𝑜2 or

writes the same cell as 𝑜2. Therefore, 𝑜1 is the last operation

on which 𝑜2 depends.

□

Example 9. On the previous example, let 𝑠1 : c[0]:=0 and
𝑠2 : c[i]:=c[i-1]+1. We search 𝑡1, 𝑡2 instantiations of (𝜅0, 𝜅1)
such that 𝑜1 ↠ 𝑜2. The systems of constraints is constructed
with𝐶1 : 0 = 𝑖 − 1, and𝐶3 = true (𝑠1 is always valid). For𝐶2,
we need to transform the constraint (𝜅0) ≺ (𝜅0, 𝜅1). Since 𝜅0
has no equivalent in Feautrier’s model convert(𝜅0) = [] (the
empty vector), hence, 𝐶2 becomes [] < [1 + 2(𝑖 − 1)], which
is true for all values of 𝑖 , thus 𝐶2 = true. Finally, 𝑄𝑠1,𝑠2 has a
unique constraint 0 = 𝑖 − 1, equivalent to 𝑖 = 1. The maximum
of this set, 𝐾 , is also this unique point. After applying the
convert function 𝜅1 = 1+ 2(𝑖 − 1) we finally get the final result〈
𝑠1,

[
⟨𝜅0, 0⟩

]〉
↠

〈
𝑠2,

[
⟨𝜅0, 0⟩, ⟨𝜅1, 1⟩

]〉
.

Prop 4. Let 𝑜1 = ⟨𝑠1, 𝑡1⟩ and 𝑜2 = ⟨𝑠2, 𝑡2⟩ be two operations.
Then,

𝑜1 ;+ 𝑜2 ⇔ convert(𝑡1) ∈ 𝑄𝑠1,𝑠2 (convert(𝑡2))

where convert is the function that converts our iteration vector
into the iteration vector introduced in the original paper [5].

Proof. The same proof as for Proposition 3 holds. The only

difference is that since we take all direct dependencies and

the transitive closure we indeed get all the dependencies. □

This equivalence proves that our formalization includes

the polyhedral model and in this case (for loops rewritten as

while loops) our system can harness the classical polyhedral

computations. We thus reached our first goal, which is to be

able to semantically capture the key notion of dependency
and being able to compute it.

The decision process of finding the set of dependencies

of a given program thus relies on the ability of effectively

computing this convert function. We are thus searching

for a relation between the variables of the program which

implies a one-to-one relation between the iteration vector

and the indices of array accesses.

There is an abundant literature on invariant generation

for general imperative programs (a survey [8] is available

on the subject), and the computation of transitive closures

of numerical relations.

In the general case, the transitive closure of an affine re-

lation is not computable, however, there exists sub-classes

that are known to be exactly computable. There exist an

algorithm [? ] that compute over-approximations of transi-

tive closures of quasi-affine relations (a more general family

of relations that encompass affine relations). Moreover, it

also returns a boolean value that tells whether this transitive

closure is exact.

Prop 5. If a relation is a translation (from the point of view
of Presburger arithmetic), its transitive closure is computable.

Proof. For instance, the work by Verdoolaege et al. [? ]. □
7
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Thus, as long as we are dealing with regular polyhedral

programs our model is decidable because our notions as well

as those in the original paper [5] coincide.

Remark. Proposition 3 and Proposition 5 give us a decision

procedure to test dependency between two given operations

for our model. However, in the case where convert is invert-
ible we do not only have a decision procedure but the full

symbolic graph of dependencies. Since, in our setting of this

section, it is invertible (convert is a translation), the sym-

bolic graph of dependencies can also be expressed, computed

and stored when we analyse a pseudo polyhedral program

with while loops.

Once we have the relations between the artificial vari-

ables that were introduced and the variables appearing in

the program we can express our iteration vector as linear

combinations of the variables of the program.

5.2 Covertly-Regular Polyhedral Programs
Our analysis also extends to programs with while loops that
are not straightforward translations of for loops. We are

also interested in capturing programs with affine control

that are not necessarily written as affine while loops. A

possible example of such case is some kind of state machine

with affine transitions. The programmer may decide to write

such computation in a way that does not syntactically match

affine loops, or a different pass in the compiler may strip

away syntactic elements that are necessary to (syntactically)

view them as affine loops.

Our analysis may be directly applied to such programs,

and provide exact dependency information. However, the

convert function that connects the iteration variables to

syntactic elements can be difficult to find. For instance, an

affine state machine with multiple variables – which may

correspond to multi-dimensional loops – would require in-

variants involving polynomials in general.

We propose an algorithm that reintroduces structure to the

programs such that computing the convert function becomes

easier. We also give a precise characterization of the class

of programs “equivalent” to polyhedral programs, which we

call covertly-regular programs.

Prop 6. A polyhedral program ( i.e., a loop nest) can be repre-
sented as

𝐴®𝑖 + ®𝑐 ≤ 0

where𝐴 is a lower-triangular matrix with ones on the diagonal,
®𝑖 is the vector whose coordinates are the loop counters, and ®𝑐 is
a vector of constants expressions that may contain structure
parameters.

Proof. A polyhedral program is a for loop nest. Without loss

of generality we can assume that all loop counters are lower-

bounded by 0, if they were not we would apply a translation

on the iteration range. Moreover, the upper-bound of a loop

counter cannot be a function of loop counters deeper in the

loop nest. Hence, the bound on the loop counters can be

written as 𝐴®𝑖 + ®𝑐 ≤ 0 where 𝐴 is a lower-triangular matrix

with ones on the diagonal, ®𝑖 is the vector whose coordinates
are the loop counters in the order as they appear in the loop

nest, and ®𝑐 is a vector of constants.
□

From now on, we will denote a polyhedral program 𝑃 by

a triple ⟨𝐴, ®𝑖, ®𝑐⟩.

Definition 11 (Covertly regular polyhedral program). A

covertly regular program ⟨𝐴, ®𝑖, ®𝑐⟩ is such that there exists an

orthogonal matrix𝑂 with det(𝑂) = 1, such that ⟨𝑂𝐴𝑂−1, 𝑂®𝑖,
𝑂®𝑐⟩ is a regular program.

Remark. The change of basis affect the whole program in-

cluding arrays accesses.

Remark. Effectively computing such a base changing is in

general undecidable. However, in the case of covertly regular

programs, we might expect to be in practise able to decide if

a given program is covertly regular or not, because transition

matrices are in practice not too complex. Of course, such an

affirmation needs to be experimentally validated. Such an

experimentation is left for future work.

5.3 Conclusion
This section exposed how we could cover the exact com-

putation of dependencies both in the regular and covertly

regular cases in the case where the basis change is exactly

computable. This is a first step to relax the initial syntactic

restrictions of the polyhedral model and this enables a new

definition of (covertly) regular programs on which the exact

computation of dependencies is expressible and coincides

with our new semantic definition of dependencies.

6 Approximate Polyhedral Model for
General Imperative Programs

Irregular programs have complex control and non-affine

accesses to arrays. In this section we propose to address the

problem of non polyhedral control. Non affine accesses are

left for future work.

In the previous sections, the key characterization is that

the relation linking the program variables (including our

annotation) was (in the favorable case) exactly computable.

For general programs, we will rely on an over-approximation

of this relation.

6.1 Dependence Analysis for Non-Affine Control
Let us recall the result of Proposition 3: if we are able to link

our iteration vectors to the scalar variables of the program

with an invertible convert function 𝜅𝑖 = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖 (𝑖, 𝑗, 𝑘),
then we can exactly compute the dependencies of a given

program. A first remark is that instead of computing the

sets 𝐾 or 𝑄 with initial variables, we can equivalently write

8
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the equivalent equations on 𝜅𝑖 variables, and add the defi-

nition of convert as additional constraints, as is illustrated

in Example 10.

Example 10. On the Array filling example we obtained 𝐶1 :

0 = 𝑖 − 1, 𝐶2 : (𝜅0) ≺ (𝜅0, 𝜅1), and 𝐶3 = 𝑡𝑟𝑢𝑒 . Instead of
replacing 𝜅𝑖 with their image by convert, we can solve the
same constraint system augmented with the constraint 𝜅1 =
1 + 2(𝑖 − 1). Now the set 𝑄 ′

𝑠1,𝑠2
is a polyhedron on 𝑖 and the 𝜅𝑖

variables whose projection on 𝑖 gives the same result 𝑄𝑠1,𝑠2 =

{𝑖 = 0} as in Example 9.

Now that we have work on general programs, we do not

have a convert function any more, we thus compute an

over-approximation of the relationship between the scalar

variables of the programs and the 𝜅𝑖 variables.

Definition 12. Let 𝑃𝑠1 (®𝑖, ®𝜅) (resp. 𝑃𝑠2 (®𝑖, ®𝜅)) be polyhedral
invariants at statement 𝑠1 (resp. 𝑠2). Let us denote by 𝑐𝑜𝑛𝑠 (𝑃)
the set of constraints of 𝑃 . Let us define 𝑄 ′

𝑠1,𝑠2
= 𝐶1 ∪𝐶2 ∪

𝑐𝑜𝑛𝑠 (𝑃𝑠1 ) ∪ 𝑐𝑜𝑛𝑠 (𝑃𝑠2 ) the union of𝐶1 and𝐶2 constraints and

these over-approximations and 𝑄♯
is the projection on the

𝜅𝑖 variables.

Prop 7. Let 𝑜1 = ⟨𝑠1, 𝑡1⟩ and 𝑜2 = ⟨𝑠2, 𝑡2⟩ be two operations
in an initial trace 𝑂 . Then,

𝑜1 ;+ 𝑜2 ⇒ 𝑡2 ∈ 𝑄♯
𝑠1,𝑠2 (𝑡1)

Proof. As 𝑐𝑜𝑛𝑠 (𝑃𝑠1 ) is an over-approximation of𝐶3 (𝑠1 should

be a valid iteration), and 𝑐𝑜𝑛𝑠 (𝑃𝑠2 )∪𝐶2 is an over-approximation

of 𝐶2 (happens-before), all initial dependencies satisfy 𝑄
♯
.

□

Remark. An important issue here is that we do not have any

result about the most recent dependence (𝐾) since comput-

ing the lexicographic maximum of 𝑄♯
may led to picking a

spurious dependency.

As we already mentioned in Section 5.1, computing poly-

hedral over-approximations can be done by various methods

including abstract interpretation. The precision of our analy-

sis will thus rely on the precision of the underlying invariant

generator. In the case of regular or covertly regular pro-

grams, if the invariant generator gives us the most precise

invariants, then we will recover the result of Proposition 3

and Proposition 4 (equivalence).

Example 11. Let us consider the following example:

1 c := 0

2 while ( i < 10 ) do

3 if i > 10 then

4 c := c + 1 (* s1 *)

5 else

6 c := c - 1 (* s2 *)

7 i : = i +1

8 done

9 b := c (* s3 *)

A good invariant generator would enable us to find that 𝑠3
does not depend on any iteration of 𝑠1 since its corresponding
invariant is empty. However, any over-approximation 𝑃𝑠1 is
safe, and we would find out that 𝑠3 depends on 𝑠1 for some
values of scalar variables satisfying 𝑐𝑜𝑛𝑠 (𝑃𝑠1 ), thus compute
spurious dependencies.

6.2 Work in Progress: Dealing with Non-Affine
Accesses

To deal with non-affine accesses, we might find inspira-

tion from the recently proposed non-polyhedral dependency

analysis [6], which uses a variant of the Handelman’s algo-

rithm for solving multivariate polynomials. The abundant

literature on linear relaxations of polynomials constraints

has been recently been put to the attention of the program

verification community that now uses it to compute over-

approximations [12, 16] that could be useful for solving our

non-linear set of constraints. However we should be careful

about their complexity in practice.

7 Related Work
The array dataflow analysis [5] and the Omega test [13]

proposed exact dependency analysis for loops with affine

controls and array accesses. Both of these work rely on the

ability to characterize the three conditions that define depen-

dency (recall Section 2.2) as affine functions of syntax ele-

ments in the source program—loop iterators. The semantics

of the target language are abstracted away and are assumed

to provide the required properties. In contrast, our work

formulates the dependency analysis based on the semantics,

and the connection to syntax elements is later established

through the convert function or its approximation. This

provides additional flexibility on how the programmer can

express their computation. For instance, while loops that

can be rewritten as for loops are seamlessly handled as we

have shown in Section 5.1.

Polly [9] performs polyhedral optimizations to LLVM-

IR, which is a low-level IR without high-level information

such as loop iterators. The semantic polyhedral regions in a

program are identified by searching for a single induction
variable (with affine lower bounds and upper bounds) for

each loop. Combined with additional analyses and transfor-

mations in LLVM, Polly can recognize program regions that

are syntactically far from the canonical polyhedral loops in

the original high-level specification. In the context of our

work, the analysis in Polly can be viewed as a low-level ver-

sion of our covertly regular loops detection without loop

instrumentation. Our specificity is to fully characterize these

semantically polyhedral loops and also to leave room for

handling non-polyhedral programs through approximations

of the convert function.

The original exact dependency analyses were later ex-

tended to expand the scope of the analysis, including while

9
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loops, non-affine if guards, and non-affine array accesses [1,

3, 14, 18]. In Fuzzy Array Dataflow Analysis [1], the non-

affine conditions are expressed as predicates encoded with

additional parameters, whereas the extension to the Omega

test [14] express them with uninterpreted function symbols.

Exact analysis is possible in some cases, but these extensions

require runtime checks or over-approximations in general.

These extensions treat while loops as unbounded for
loops with a predicate that defines the exit condition [1, 3, 14].

The unbounded for loop uses an iterator that is not in the

original program, which is analogous to the iteration vari-

ables in our work. There are two key differences: (i) we use

iteration variables uniformly to both for and while loops,
and (ii) we (attempt to) compute connections to syntax ele-

ments to express dependencies in terms of integer variables

in the source program. For instance, the while loop in Ex-

ample 2 is viewed as:

1 c[0] := 0;

2 i := 1;

3 for t from 0

4 c[i] := c[i-1] + 1;

5 i := i + 1;

where the variable 𝑖 is treated as data, and all array accesses

are now data-dependent. Our work identifies the relation

between 𝑖 and 𝑡 , linking the variable 𝑖 to the iteration count

of the while loop.

Alphabets [15] is an equational language that can be viewed

as an intermediate representation for polyhedral compilers.

The language supports while loops in a manner similar to

other work [1, 3, 14]: unbounded domain with exit condi-

tion. The crucial difference
1
is that the dependencies are

expressed as affine functions of the domain indices, includ-

ing the unbounded domain corresponding to while loops.

In other words, there are only (semantic) iteration variables

in the language. A potential application of our analysis is to

construct Alphabets representations of programs including

while loops.
Apollo [17] is a framework for runtime optimization that

detects (affine) regularity in program behavior and applies

polyhedral optimizations, speculating that the regularity

persists. Runtime analysis enables code regions that cannot

be determined to be polyhedral at compile-time to be found

and optimized. Our work shares some similarities with the

dynamically polyhedral programs targeted by Apollo. The

main difference is that we target statically regular programs,

but with more flexibility on how the program is written.

8 Conclusion
In this paper we proposed a new semantic formalization of

the key analysis of the polyhedral literature, namely Array

1
Alphabets can express such computations as data-dependent dependencies

like other work, but this is not the default/intended use in Alphabets.

Dataflow Analysis. We formalized the notion of dependency

in a semantic fashion and showed the relevance of this notion

by demonstrating its applicability to the traditional syntactic

polyhedral programs as well as to covertly regular programs.

We also proposed an approximated computation of depen-

dencies in the general case of non-regular control flows.

Future work includes extensions of our analyses for more

general programs including non-affine accesses and more

complex data structures such as trees. Based on a proper

definition of our general approximated dependence analysis,

we will then be able to revisit and extend other classical

polyhedral activities such as loop transformations and code

generation to allow for optimization and parallelization of

programs with while loops and loosened control structures.
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