v 4 I . A
s nformotics S mothamatics —: : — oLl?O
W ENS DE LYON
COMPILING TREES
COMBINING DATA LAYOUTS AND THE POLYHEDRAL MODEL
Paul IANNETTA (ENS de Lyon, Inria & LIP)
paul.iannetta@ens-lyon.fr
Jury:
CHARLES Henri-Pierre, Rapporteur. (GONNORD Laure, Directrice de these.
CLAUSS Philippe, Rapporteur. RADANNE  Gabriel, Co-encadrant.
COLLANGE Caroline, Examinatrice. MOREL Lionel, Co-encadrant.

KELLER Gabriele, Examinatrice. MEISTER Benoit, Guest



Introduction
[ 1}

Programmers want to write easy to maintain software <>'
Offload complexity to the compiler (Hardware diversity) X v

°
°
@ We don't want that people write hand tuned code.
°
°

... the compiler has to be smart enough to use the hardware cleverly enough
let's talk a bit about the hardware...

Mon. 2 May 2022 PhD Defense 1/42



Introduction
oce

L3 Cache

L1i Cache L1i Cache
: '
L1d Cache <—> CPU Core L1d Cache <— CPU Core

e Memory contains everything (slow — 50 ~ 100ns)
e Cache contains only the bare minimum (fast — 0.5 ~ 7ns)

Mon. 2 May 2022 PhD Defense



Introduction
[ el

@ Programs whose behavior can be accurately predicted (control flow)
e The CPU always knows what to do

Mon. 2 May 2022 PhD Defense




Introduction
[ el

@ Programs whose behavior can be accurately predicted (control flow)
e The CPU always knows what to do
@ Programs with predictable read/write patterns (io patterns)

e Prefetch and fill the cache from memory
e Avoid waiting for data

Mon. 2 May 2022 PhD Defense 3/42



Introduction
[ el

@ Programs whose behavior can be accurately predicted (control flow)
e The CPU always knows what to do
@ Programs with predictable read/write patterns (io patterns)

e Prefetch and fill the cache from memory
e Avoid waiting for data

@ Programs with independant parts (parallelism opportunities)

e Share the work between CPUs
e Better use of system ressources

Mon. 2 May 2022 PhD Defense 3/42
y



Introduction

oe

for (int i =1 ; i < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ ATil[3] = A[i1(j-11 + A[i-11[j];

Mon. 2 May 2022 PhD Defense 4/42



Introduction

oe

for (int i =1 ; i < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ ATil[3] = A[i1(j-11 + A[i-11[j];

e Statement
<— Dependence

Mon. 2 May 2022 PhD Defense 4/42



Introduction

oe

for (int i =1 ; i < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ ATil[3] = A[i1(j-11 + A[i-11[j];

e Statement
<— Dependence

Mon. 2 May 2022 PhD Defense 4/42



Introduction

oe

for (int i =1 ; i < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ ATil[3] = A[i1(j-11 + A[i-11[j];

e Statement
<— Dependence

[

Mon. 2 May 2022 PhD Defense 4/42



Introduction

oe

for (int i =1 ; i < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ ATil[3] = A[i1(j-11 + A[i-11[j];

e Statement
<— Dependence

Mon. 2 May 2022 PhD Defense 4/42



Introduction

oe

for (int i =1 ; i < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ ATil[3] = A[i1(j-11 + A[i-11[j];

e Statement
<— Dependence

Mon. 2 May 2022 PhD Defense 4/42



Introduction
oe

for (int i =1 ; i < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ ATil[3] = A[i1(j-11 + A[i-11[j];

e Statement
<— Dependence

J
N-1
Change the loop traversal
Improve inter-instruction parallelism
1
>
1 N-1 i

Mon. 2 May 2022 PhD Defense 4/42



Introduction
oe

for (int i =1 ; i < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ ATil[3] = A[i1(j-11 + A[i-11[j];

e Statement
<— Dependence

n-i N-{i
K i
474740744444
Change the loop traversal il
Improve inter-instruction parallelism (?????jj/
KKK
1 | ¥k Kk
I N-1 7 1 N1 -2 7

Mon. 2 May 2022 PhD Defense 4/42



Introduction
oe

for (dnt 1 =1 ; 1 < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ A[il (3] = A[i1([j-1] + A[i-11[j];

e Statement
¢— Dependence

n-1 n-i
9707044’ 4"4'<d
00 e
Change the loop traversal Y0707 7 e
Improve inter-instruction parallelism (?????55/
5907074"4"4"4"4'd
1 1 KK KKK
1 N-1 i) 1 N-1 2N -2 i\

Mon. 2 May 2022 PhD Defense 4/42



Introduction
oe

for (dnt 1 =1 ; 1 < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ A[il (3] = A[i1([j-1] + A[i-11[j];

e Statement
¢— Dependence

n-1 n-i
9707044’ 4"4'<d
00 e
Change the loop traversal Y0707 7 e
Improve inter-instruction parallelism (?????55/
A A A e
1 U KKK
1 N-1 i) 1 N-1 2N -2 i\

Mon. 2 May 2022 PhD Defense 4/42



Introduction
oe

for (dnt 1 =1 ; 1 < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ A[il (3] = A[i1([j-1] + A[i-11[j];

e Statement
¢— Dependence

n-1 n-i
9707044’ 4"4'<d
00 e
Change the loop traversal Y0707 7 e
Improve inter-instruction parallelism (?????55/
7170704"4"4"4'd
1 ] kKKK
1 N-1 i) 1 N-1 2N -2 i\

Mon. 2 May 2022 PhD Defense 4/42



Introduction
oe

for (dnt 1 =1 ; 1 < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ A[il (3] = A[i1([j-1] + A[i-11[j];

e Statement
¢— Dependence

n-1 n-i
9707044’ 4"4'<d
00 e
Change the loop traversal Y0707 7 e
Improve inter-instruction parallelism (5????55/
797000444
1 ] KKK
1 N-1 i) 1 N-1 2N -2 i\

Mon. 2 May 2022 PhD Defense 4/42



Introduction
oe

for (dnt 1 =1 ; 1 < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ A[il (3] = A[i1([j-1] + A[i-11[j];

e Statement
¢— Dependence

n-1 n-i
9707044’ 4"4'<d
00 e
Change the loop traversal L
Improve inter-instruction parallelism (?????55/
79707 4"4"4"4'd
1 ] KK KKK
1 N-1 i) 1 N-1 2N -2 i\

Mon. 2 May 2022 PhD Defense 4/42



Introduction
oe

for (dnt 1 =1 ; 1 < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ A[il (3] = A[i1([j-1] + A[i-11[j];

e Statement
¢— Dependence

n-1 n-i
9707044’ 4"4'<d
0704 4
Change the loop traversal Y1 47070
Improve inter-instruction parallelism (??5??55/
79707404 '4"4"4'd
1 ] KKK
1 N-1 i) 1 N-1 2N -2 i\

Mon. 2 May 2022 PhD Defense 4/42



Introduction
oe

for (dnt 1 =1 ; 1 < N ; ++i)
for (int j =1 ; j < N ; ++j)
/* s: */ A[il (3] = A[i1([j-1] + A[i-11[j];

e Statement
¢— Dependence

n-1 n-i
A A A A A d
M i
Change the loop traversal Y071 78 0 8
Improve inter-instruction parallelism (?????55/
597074044 4"4'd
1 ] KKK KKK
1 N-1 i) 1 N—-1 2N -2 i\

Mon. 2 May 2022 PhD Defense 4/42



Introduction
°

Linear Algebra kernels

Q WAL I\‘;%‘“

Simulations R (CORE
Machine learning | oo
£y AT

Image Processing

5 i < N ++i)

0 j <N ; ++i)
= (A[i-11[3-1] + A[i-11[3] + A[i-11[j+1]
+ A[i1[j-11  + A[il[3]  + A[41[j+1]
+ A[i+1][j-11 + A[i+11[3] + A[i+1]1[j+1D)
/

for (int i =
for (int j
B[i][j]

o

Uniform Blur

Mon. 2 May 2022 PhD Defense



Introduction
[ I}

The Polyhedral Model (French Success Story since 1991!)

Compiles programs with affine loops ranging over arrays accessed with affine
functions into efficient C code by: 1) Analysing dependencies, 2) Reschedule k.
the instructions, 3) Generate C code.

Pros:
@ The best tool when it comes to polyhedral programs
@ 30-year of active research and improvements
@ Available in productions compilers (gcc, llvm)

Cons:

o Still limited to arrays

Mon. 2 May 2022 PhD Defense 6/42



Introduction
oce

Properties Array Pointers

Contiguous in Memory X
Random Access v x

Mon. 2 May 2022 PhD Defense



Introduction
oce

Properties Array Pointers

Contiguous in Memory v X
Random Access v X

Other nice data structures?

Mon. 2 May 2022 PhD Defense



Introduction

@ Are Algebraic Data Types Regular Enough?
@ How to Compile ADTs reshaping efficiently?

Mon. 2 May 2022 PhD Defense 8/42



Are Algebraic Data Types Regular Enough?
°

ARE ALGEBRAIC DATA TYPES
REGULAR ENOUGH?




Are Algebraic Data Types Regular Enough?
[ I}

type suit =

| Heart

| Diamond

| Clubs

| Spade
type value =

| Ace

| King

| Queen

| Jack

| Number of int
type card = (suit, value)

a4

Mon. 2 May 2022 PhD Defense 10/42

A simple ADT



Are Algebraic Data Types Regular Enough?
oce

type expr =
| Cst of int
| Add of expr * expr
| Mul of expr * expr

+
let rec eval = function 1 //// \\\\ «

| Cst (i) -> i RN
| Add (el, e2) -> eval el + eval e2 5 3
| Mul (el, e2) -> eval el * eval e2

(1 +2 %3 ="7x%) This is “regular”, isn't it?
eval (Add(Cst(1), Mul(Cst(2), Cst(3)))

The expr ADT and its eval function

Mon. 2 May 2022 PhD Defense 11/42



Are Algebraic Data Types Regular Enough?
[ Jelele]

@ The constant part (enumeration with arguments) has a fixed size

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?

@000

@ The constant part (enumeration with arguments) has a fixed size

@ The recursion is captured by using pointers
struct tree {

int val;

struct tree *left, *right;

};

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
[ Jelele]

@ The constant part (enumeration with arguments) has a fixed size

@ The recursion is captured by using pointers

@ But pointers = no predictability

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
[ Jelele]

@ The constant part (enumeration with arguments) has a fixed size

@ The recursion is captured by using pointers

@ But pointers = no predictability

What about exploiting the regular properties of ADTs...
...and store them into arrays!

Mon. 2 May 2022 PhD Defense 12/42



Are Algebraic Data Types Regular Enough?
0®00

Mon. 2 May 2022 PhD Defense




Are Algebraic Data Types Regular Enough?
0®00

= [

Joy
2 3

@ A notion of layers

Mon. 2 May 2022 PhD Defense




Are Algebraic Data Types Regular Enough?
0®00

2-3

2-3+1

@ A notion of layers

@ A simple formula for finding parent and children (it's a shift away)

Mon. 2 May 2022 PhD Defense 13/42



Are Algebraic Data Types Regular Enough?
0®00

/N, = ErEEEEm

/N
1 2

@ A notion of layers
@ A simple formula for finding parent and children (it's a shift away)

@ The tree can be compressed, if only values matter.

Mon. 2 May 2022 PhD Defense 13/42
y



Are Algebraic Data Types Regular Enough?
0®00

3/6\7

/N
1 2

@ A notion of layers
@ A simple formula for finding parent and children (it's a shift away)
@ The tree can be compressed, if only values matter.

@ Insertion happens at the end, or in a hole

Mon. 2 May 2022 PhD Defense 13/42
y



Are Algebraic Data Types Regular Enough?
[e1eY o]

Figure: A graphical notation

Mon. 2 May 2022 PhD Defense




Are Algebraic Data Types Regular Enough?
oooe

@ Variation without holes
@ Obviously, depth-first layout
@ Cache oblivious community has designed many byzantine layouts

@ Most famous: Van Em Boas Layout (see manuscript)

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
oooe

@ Variation without holes
@ Obviously, depth-first layout
@ Cache oblivious community has designed many byzantine layouts

@ Most famous: Van Em Boas Layout (see manuscript)

The rest of the presentation uses the breadth-first layout ]

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
©000000

We want a data-structure:
@ which is actually used
@ which would benefit from optimizations

@ which is neither to complex nor to simple

Mon. 2 May 2022 PhD Defense




Are Algebraic Data Types Regular Enough?
©000000

We want a data-structure:

@ which is actually used

@ which would benefit from optimizations

@ which is neither to complex nor to simple

Mon. 2 May 2022

We chose AVL Trees

PhD Defense




Are Algebraic Data Types Regular Enough?
0®00000

/N /
3

type avl = 1 6
| Empty
| Node of avl * int * avl Figure: An AVL
Operations:
@ Insert/Delete/Find x
@ Rotations (Structural \/ \y v

Modifications) LAY / N / \
N/

(a) A binary tree T b) T after L-rotation
Mon. 2 May 2022 PhD Defense 17/42



Are Algebraic Data Types Regular Enough?
00®0000

AVL with pointers Implicit layout (Tarbres)

Rotations are easy and cheap O(1) Rotations in place?
Bad cache behavior (find/map) Nice cache behavior (find/map)

Mon. 2 May 2022

PhD Defense 18/42



Are Algebraic Data Types Regular Enough?
000000

~/l\~) shift A to iz

/ 0 —
2N \ N shift A to iy

Figure: Subtree shifts

Mon. 2 May 2022 PhD Defense




Are Algebraic Data Types Regular Enough?
000000

pull up A /"AE
‘ Al

pull down left A PN

Figure: Subtree pull-ups and pull-downs

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
000000

X

RN

s y
1/74:\ / \
7\ z
BN

//\ /N
\
/CA /,/,D,\,\

@ Original Unbalanced State

\

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
000000

X @ Original Unbalanced State
N, o Pull Down (Left) A
<N
// ! 7\ z
, A\\ _//,B:\ / \
ey b

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?

0O0000e0

X @ Original Unbalanced State
N o Pull Down (Left) A
o Shift Left B

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?

0O0000e0

Original Unbalanced State

y o
N o Pull Down (Left) A
e \ AN e Shift Left B
AN A,’jg\x /z\ @ Rename

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
000000

@ Original Unbalanced State
’ e Pull Down (Left) A
I/ \Z o Shift Left B
\ / @ Rename
A //:lf\i\ /:Cl\ D @ Move up (z-B-C)

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?

O00000e

@ Support for insert/delete/find/map

@ Rotation as a combination of low-level operations -

@ Support for scalar-type and pointer-type values /,\/ \/) shift Ato iy /':w\_/ \/:)

. ! shift A to £ Fa j

@ The low-level operations can be: NG Mt “h )
e Naive: move one layer at a time Y e Subiree shifs FaranN
e Pipelined: try to start the next move as soon as possible
e Parallelized

@ Available at: https://gitlab.inria.fr/paiannet/calv/

Mon. 2 May 2022 PhD Defense


https://gitlab.inria.fr/paiannet/calv/

Are Algebraic Data Types Regular Enough?
[1e}

@ A benchmark adapted from the database community
@ Scenario:
e Emulate a key-value database
o Check the performance of pointers vs arrays.
151 Bl | laes BEB AVL (pointers)
_ H Tarbre (implicit)
(2]
£ 1.0-
= 0.731s
0.5 1 0.459s

fillRandom(N) deleteRandom(N/2) readRandom(N/2) fillRandom(N/2)

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
[1e}

@ A benchmark adapted from the database community

@ Scen
(]
]
15- Array based key-value store performs better! ters)
nplicit)
“
£ 1.0-
F 747s
IR
0.5 1 RS

fillRandom(N) deleteRandom(N/2) readRandom(N/2) fillRandom(N/2)

Mon. 2 May 2022

PhD Defense



Are Algebraic Data Types Regular Enough?
oce

@ Implemented as a small library (calv)
@ We tried to exploit the parallelism of the low-level operations

@ It works!

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
oce

@ Implemented as a small library (calv)

@ We tried to exploit the parallelism of the low-level operations
o It works!

e Hand Tuned

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
oce

@ Implemented as a small library (calv)

@ We tried to exploit the parallelism of the low-level operations
o It works!

e Hand Tuned

°

Improve parallelism
e Improve granularity of low level operations

Mon. 2 May 2022 PhD Defense



Are Algebraic Data Types Regular Enough?
oce

@ Implemented as a small library (calv)

@ We tried to exploit the parallelism of the low-level operations
o It works!

e Hand Tuned

°

Improve parallelism
e Improve granularity of low level operations

Let's try to automate!

Mon. 2 May 2022 PhD Defense



How 1O coMPILE ADTS
RESHAPING EFFICIENTLY?




How to compile ADTs reshaping efficiently?
0®0000000000000

REW is small DSL to:
@ Algebraic Data Types without sharing

@ describe structural transformations on
those through pattern matching.

Mon. 2 May 2022

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {
| Node(a,i,Node(b,j,c)) -> Node(b,j,c)
| Node(a,i,Empty) -> Empty
| Empty -> Empty

}

Figure: What REW looks like

PhD Defense



How to compile ADTs reshaping efficiently?

00®000000000000

@ Give the specifications (describe the types & the transformations)
@ Figure out the movements

© Compute the dependences between the movements

@ Reschedule the movements

© Generate the code

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
000®00000000000

type tree = Empty | Node (tree,int,tree)

Polyhedral
Representation
pull_up (t : tree) : tree = rewrite t {

| Node(a,i,Node(b,j,c)) -> Node(b,j,c)
| Node(a,i,Empty) -> Empty
| Empty —-> Empty

}

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
000®00000000000

pull up BC a

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {
| Node(a,i,Node(b,j,c)) -> Node(b,j,c) Polyhedral
| Node(a,i,Empty) -> Empty Schedule
| Empty -> Empty
+

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
000®00000000000

pull up BC a

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {
| Node(a,i, NCGSBIGNEN) -> Node(b,j,c) Polyhedral
| Node(a,i,Empty) -> Empty Schedule
| Empty -> Empty
+

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
000®00000000000

pull w BC__
Memory
movements
type tree = Empty | Node (tree,int,tree) E——
Representation

pull_up (t : tree) : tree = rewrite t {

| Node(a,i, NGAEUBINEN) > Node(Bi35e)

| Node(a,i,Empty) -> Empty Schedule

Empty -> Empt
| Pty = Eapty

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000®0000000000

type tree = Empty | Node (trge,i?t,trge)

N

2 3
/N /N
4 5 6 7

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000®0000000000

type tree = Empty | Node (trge,i?t,trge)

N

2 3
/N /N
4 5 6 7

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000®0000000000

type tree = Empty | Node (trge,i?t,trge)

.0

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?
0000®0000000000

type tree = Empty | Node (trge,i?t,tr?e)

/\

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000®0000000000

type tree = Empty | Node (tree,int,tree)

/\

/\ /\
4 5

(.0)%.1

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000®0000000000

type tree = Empty | Node (trge,i?t,trge)
1
2 3
/N /N
4 5 6 7

.2.1

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000®0000000000

type tree = Empty | Node (trge,i?t,trge)

¥

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?
0000®0000000000

type tree = Empty | Node (trse,i?t,trge)

2/1\3
¢ o¢ ®

p-p

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?
00000®000000000

REw Code
Memory
movements

.. Polyhedral
Int| . — .
| 1 0 D Representation

Node(a, i ,Node(b,j,c)) -> Node(b, ], c)

/ \\\ pull up BC / \ E]]
AN / \\ /B Je (b:tree| .2.0 — .0
By e (j:int| .2.1 = .1)
(c:tree| .2.2 = .2))

Polyhedral
Schedule

Mon. 2 May 2022 PhD Defense 30/42



How to compile ADTs reshaping efficiently?
00000®000000000

REw Code
Memory
movements

.. Polyhedral
Int| . — .
| 1 0 D Representation

Node(a, i ,Node(b, j,c)) -> Node(b, ], c)

\ \

/ \\ pull up BC / \ E]]
SN / \\ /B Je (b:tree| .2.0 — .0
By e (j:int| .2.1 = .1)
(c:tree| .2.2 = .2))

Polyhedral
Schedule

Mon. 2 May 2022 PhD Defense 30/42



How to compile ADTs reshaping efficiently?
00000®000000000

REw Code
Memory
movements

.. Polyhedral
Int |, — .
| 1 . D Representation

Node(a,i ,Node(b,]j,c)) -> Node(b, ], c)

) \

/ \\ pull up BC / \ E]]
AN / \\ /B Je (b:tree| .2.0 — .0
By e (j:int| .2.1 = .1)
(c:tree| .2.2 = .2))

Polyhedral
Schedule

Mon. 2 May 2022 PhD Defense 30/42



How to compile ADTs reshaping efficiently?
00000®000000000

Memory
movements
| _— - (a:tree| .0 = 0)
\’\ _pullup B / \\ (]i Cint | 150 D . Polyhedrall
/ ,\ epresentation

< (
8, (
(

Node(a, i ,Node(b, j,c)) -> Node(®, j,c)

c jrint] .2.1 — .1)

c:tree| .2.2 = .2

VRN /N

By v (bitree| L2.0 — @0)
Polyhedral
Schedule

Mon. 2 May 2022 PhD Defense 30/42



How to compile ADTs reshaping efficiently?
00000®000000000

REW Code

Memory
movements
Polyhedral
Representation

Polyhedral
Schedule

Node(a, i ,Node(b,J,c)) -> Node(b [, c)

a:tree| .0 = ()
izint| .1 — Q)

(

7 - 7 7N (]
AN / \ /By €y (b:tree| .2.0 — .0)

(

(

jroint]L2.1 — @D)

c:tree| .2.2 = .2

Mon. 2 May 2022 PhD Defense 30/42



How to compile ADTs reshaping efficiently?
00000®000000000

REW Code

Memory
movements
Polyhedral
Representation

Polyhedral
Schedule

Node(a, i ,Node(b, ] ,@)) -> Node(b, j,@)

a:tree| .0 = ()

/\ _pullup BC /& itint] .1 = 0)

(
7 7N\ (]
AN / \A /By JCy (b:tree| .2.0 = .0
(
(

/By e jrint] 2.1 > .1)
c:tree | L2.2 - L2)

Mon. 2 May 2022 PhD Defense 30/42



Mon. 2 May 2022

How to compile ADTs reshaping efficiently?
000000@00000000

.Al

PhD Defense




How to compile ADTs reshaping efficiently?
0000000e0000000

REwW Code

Memory
movements

Node(a, i ,Node(b, j,c)) -> Node(b, j,c)

\ (.0—=0) ~~ ko, ( -O-Soko = 0) Polyhedral
ia - (] 1 =0 [) W(] 1 =0 D Representation
JA ; ;
y N (.2.0 = .0) ~Vky,(.2.00% = 0.0k )
VO NN o (.21 = .1) ~(.2.1 = .1) Polyhedral
_— s 5,0, Schedule

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000000e0000000

Node(a, i ,Node(b, j,c)) -> Node(b, j,c)
Memory
k
.0 — .D WV/{(),G '0-90 0 — .D Polyhedral
1= 0) ~(.1 = 0) Representation

2.0 = .0) ~Vki,(.2.00 = 0.0k )

21 1) (21 1)

2.2 5 2) w7

s/’
>

>
PN - = - =N

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000000e0000000

Node(a,i,Node(b, j,c)) -> Node(b, J,c)
Memory
(] 0 =0 D WV/{(),G -O-SDkO =0 D Polyhedral
(.1 —>.D ~ (L1 —>.D Representation
m (.2.0 = .0) ~Vki,(.2.08 = 0.0 )
(
(

21 1) (21 1)

2.2 5 2) w7

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000000e0000000

REwW Code
Node(a, i ,Node(b, j,c)) -> Node(b, j,c)

Memory

movements

.0 — 0 D ~~ ko, ( -O-SDkO =0 D Polyhedral
1= 0) ~(.1 = 0) Representation

2.0 > @) ~ ki, (. 2.0k — FOIPH))

21.1) (.21 1)

2.2 5 2) w7

)
-

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000000e0000000

REwW Code

Memory
movements

k
.0 — 0 D ~~ ko, ( 0.9 — ) D Polyhedral

1= 0) ~(.1 = 0) Representation
2.0 = .0) ~Vki,(.2.00 = 0.0k )

Polyhedral
20 - @) (620 - @)

2.2 = 2) w7

Node(a, i ,Node(b,j,c)) -> Node(b,j,c)

PN - = - =N

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
0000000e0000000

REwW Code

Memory
movements

k
0= 0) ~~ ko, ( 0.9 — ) D Polyhedral

1 =0 D W(] 1 =0 D Representation
2.0 = .0) ~Vki,(.2.00 = 0.0k )

215 1) (.21 1)

2.2 > L2) 7

Node(a, i ,Node(b, j,c)) -> Node(b, j,c)

b

|37

5
l b:_
PN N N Ny

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
00000000e000000

Node(a,i,Node(b,j,@)) -> Node(b,j,c)

Memory
movements
Polyhedral
Representation
Polyhedral

(-2.2.2%.1 5 .2.20.1) (c1) e
(2.2 .2) ~ !
(.2.2.2%.0. 0% — .2.2k.0.05) (c)

Mon. 2 May 2022 PhD Defense

3rd

iteration order (memcpy)

(®1 3|qeueA) JopIO UOHEIRY T




How to compile ADTs reshaping efficiently?
000000000e00000

ki, ko T
N -2

/\ ReEw Code
iA/“‘ X - Memory
A movements

—_— —_— Polyhedral
0 .
Representation

Polyhedral
Schedule

~

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
000000000e00000

ki, ko T
N -2

/\ ReEw Code
iA/“‘ X _ ; _ Memory
: A / movements
— —_— Polyhedral
0 .
Representation

Polyhedral
Schedule

Mon. 2 May 2022 PhD Defense



How to compile ADTs reshaping efficiently?
000000000e00000

ki, ko T
N -2
@
N
17
0 N=2 ko
(.2.0.0M = .0.¢") (b)
(.2.2.2%2.1 — 2.2k 1) (c1)

Mon. 2 May 2022 PhD Defense

REw Code
Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

34/42



How to compile ADTs reshaping efficiently?
000000000e00000

ki, kT
N -2
A
o A (/:O’C movements
0 . : — Polyhedral
.._T y Representation
0 N—2" k'
Polyhedral
Schedule
(.2.0.¢" —.0.0%) (b)
(.2.2.2%2.1 = .2.2%. 1) (c1) ==
(.2.2.2%2.0. 0% — .2.2k,0. k) (c0)

Mon. 2 May 2022 PhD Defense 34/42



How to compile ADTs reshaping efficiently?
0000000000 ®0000

ki, ko |
N —
L db ¢ Let's take the rule (cp): (.2.2.2k2. 1 — .2.2%. 1)
0 +y 4+ 4444
0 N—2" 5

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?
0000000000 ®0000

ki, ko T
N —
Let's take the rule (cp): (.2.2.2k.1 — 2.2k 1)
11 o When ky =1, (c): ((.2)3.1 — (.2)2.1)
AR e When ky =2, (cp): ((-2)*.1— (.2)3.1)
0 N R A
0 N -2 k3>

Mon. 2 May 2022 PhD Defense KLYZY)



How to compile ADTs reshaping efficiently?
0000000000 ®0000

ki, ko T
N —
Let's take the rule (cp): (.2.2.2k.1 — 2.2k 1)
13 e When ky = 1, (c): ([((2)2 .1 — (.2)2.1)
AR e When ky =2, (c): ((-2)*.1 = [(.2)%.1)
0 N R A
0 N -2 k3>

Mon. 2 May 2022 PhD Defense KLYZY)



How to compile ADTs reshaping efficiently?
0000000000 ®0000

ki, ko T
N —
Let's take the rule (cp): (.2.2.2k.1 — 2.2k 1)
11 o When ky =1, (c): ((.2)3.1 — (.2)2.1)
AR e When ky =2, (cp): ((-2)*.1— (.2)3.1)
P A A I < e More generally, (co)(k) and (cp)(k + 1)
0 N N N A AN conflict.
0 N -2 k3>

Mon. 2 May 2022 PhD Defense KLYZY)



How to compile ADTs reshaping efficiently?
00000000000e000

REwW Code

I\,l(likzz N—2i Memory
movements

Scheduling by Farkas Polyhedral

and ILP Solver Representation

> Polyhedral
0 N=2" s 0 N-2 Schedule

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?
0000000000000

R
i
N—2
° Memory
movements
Polyhedral
o Representation

0 Polyhedral
Schedule

0 N=2

Application of Quilleré's Algorithm

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?
0000000000000

for (i =0 ; i<=0; i +=1) 2

for (1 =1 ; i <=N-2; i+=1)

0 N=2
Application of Quilleré's Algorithm

Mon. 2 May 2022 PhD Defense

Memory
movements
Polyhedral
Representation

Polyhedral
Schedule




How to compile ADTs reshaping efficiently?
0000000000000

for (i =
for (j

for (1 =

1

1
N -2
3 1<=0;54i+=1) i
0; j<=N-2; 3 +=1)
;1 <= N-2 ; i+= 1) .
o
0
0

Application of Quilleré's Algorithm

Mon. 2 May 2022 PhD Defense

Memory
movements
Polyhedral
Representation

Polyhedral
Schedule




How to compile ADTs reshaping efficiently?
0000000000000

.
1
N -2

for (1 =0 ; i<=0; i+=1) 2 Memory
for (j =0 ; j<=N-2; j+=1) movements

for (i =1 ; 1 <= N-2 ; i+ 1) ° Polyhedral
o Representation

0 Polyhedral
Schedule

0 N—2

Application of Quilleré's Algorithm

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?

000000000000 e00

I REwW Code
i
N-—2
for (1 =0 ; i<=0; 1i+=1) Memory
for (j =0 ; j<=N-2; j+=1) movements
(.2.0¢/ = .0¢) // b

for (i =1 ; i <=N-2 ; i+= 1)

e Gt ol Polyhedral
or =953 <=05 77 Representation
for (j =0; j<=N-1i-2; j+=1)
0 Polyhedral
T @& 0 0 0 0 ¢ 0 ¢ Schedule

0 N—-2"

~

Application of Quilleré’'s Algorithm

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?
0000000000000

IR REwW Code
i

N -2
for (i =0 3; i<=0;1i+=1) Memory
(.2.00/ = .0.0/) // b
for (i =1 i

i ;1 <=DN-2 ; i+=1)
for (j =0 ; j<=0; j+=1) RPOWhedra.l
((.2)*1. 1= (.2).1) //ct epresentation
5 j<=N-i

((.2)*1. 0./ = (.2)".0.9/) //cO 0 Polyhedral
T @& 0 0 0 0 ¢ 0 ¢ Schedule

0 N—-2"

~

Application of Quilleré’'s Algorithm

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?
0000000000000

Node(a,i,Node(b,j,c)) -> Node(b,j,c)

IR REwW Code
i
N-—2

Memory
for (3 =05 j<=N-2; j+=1) movements

(2.0 > 09) /70

for (i =1 ; i <= N-2 ; i+= 1)

Polyhedral
. . . . Representation
for (j =0 ; j<=N-1i-2;3j+=1)

(-2t 1= (.2).1) //ct
((-2)*. 0.9/ = (.2).0.07) //cO

0 Polyhedral
Schedule

0 N=2

Application of Quilleré’'s Algorithm

Mon. 2 May 2022 PhD Defense 37/42



How to compile ADTs reshaping efficiently?

0000000000000 e0

Let (s1 — di) and (s, — da)) be two moves (not necessarily distinct). If we consider

di and s, as regular expressions.

Then,
L(d1) N L(sy) is the conflict space and it can be characterized by affine inequalities.

Conflict analysis: Compute the dependences for all tuples of movements

Mon. 2 May 2022 PhD Defense 38/42



How to compile ADTs reshaping efficiently?
00000000000000e

@ Promising technique to compile pattern matching-based structural transformations

@ Extension of the polyhedral techniques to a different class of regular programs

Mon. 2 May 2022 PhD Defense




How to compile ADTs reshaping efficiently?
00000000000000e

@ Promising technique to compile pattern matching-based structural transformations

@ Extension of the polyhedral techniques to a different class of regular programs

Front end for ADTs which plugs into the polyhedral model

Mon. 2 May 2022 PhD Defense




Conclusion
®00

@ Are Algebraic Data Types Regular Enough?
Yes, but the layout is important
Parallelization opportunities

Implemented as a small library

Better exploited through automation

Mon. 2 May 2022 PhD Defense 40/42



Conclusion
®00

@ Are Algebraic Data Types Regular Enough?
e Yes, but the layout is important
e Parallelization opportunities
e Implemented as a small library
o Better exploited through automation
@ How to Compile ADTs reshaping efficiently?
e A framework to compile structural transformation
e Reuse polyhedral ideas
e Partial implementation by Gabriel

Mon. 2 May 2022 PhD Defense 40/42



Conclusion
®00

@ Are Algebraic Data Types Regular Enough?
e Yes, but the layout is important
e Parallelization opportunities
e Implemented as a small library
o Better exploited through automation

@ How to Compile ADTs reshaping efficiently?

e A framework to compile structural transformation
e Reuse polyhedral ideas
e Partial implementation by Gabriel
@ Another Model for the Input Language of the Polyhedral Model?
e A framework to extend the polyhedral model

e Based on a modified operational semantics
e Enabling future non-exact extensions

Mon. 2 May 2022 PhD Defense 40/42



Conclusion
oceo

o Extend REW:
e Add recursion, guards

e Add support for functions @ Continue to explore reformulation
@ Improve the compilation of REW of the polyhedral model input
o Generate parallel code language
e Improve parallel cache
performance

Mon. 2 May 2022 PhD Defense 41/42



Conclusion
ooe

THANK YOU FOR YOUR ATTENTION

—>0 == 0<

(QUESTIONS?

Mon. 2 May 2022 PhD Defense 42/42



	Introduction
	
	
	
	
	

	Are Algebraic Data Types Regular Enough?
	
	
	
	

	How to compile ADTs reshaping efficiently?
	Conclusion

