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Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

What is Compilation?

Programmers want to write easy to maintain software

Offload complexity to the compiler (Hardware diversity)

We don’t want that people write hand tuned code.

... the compiler has to be smart enough to use the hardware cleverly enough

let’s talk a bit about the hardware...
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The Basic Blocks Around a CPU

Memory contains everything (slow – 50 ∼ 100ns)

Cache contains only the bare minimum (fast – 0.5 ∼ 7ns)
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Programs Which Play Well With The Hardware

Programs whose behavior can be accurately predicted (control flow)

The CPU always knows what to do

Programs with predictable read/write patterns (io patterns)

Prefetch and fill the cache from memory
Avoid waiting for data

Programs with independant parts (parallelism opportunities)

Share the work between CPUs
Better use of system ressources
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A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1
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/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
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Change the loop traversal

Improve inter-instruction parallelism
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What About the Real World?

Linear Algebra kernels

Simulations

Machine learning

Image Processing

...

for (int i = 0 ; i < N ; ++i)

for (int j = 0 ; j < N ; ++i)

B[i][j] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]

+ A[i][j-1] + A[i][j] + A[i][j+1]

+ A[i+1][j-1] + A[i+1][j] + A[i+1][j+1])

/ 9.0

Uniform Blur
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The Polyhedral Model

The Polyhedral Model (French Success Story since 1991!)

Compiles programs with affine loops ranging over arrays accessed with affine
functions into efficient C code by: 1) Analysing dependencies, 2) Reschedule
the instructions, 3) Generate C code.

Pros:

The best tool when it comes to polyhedral programs

30-year of active research and improvements

Available in productions compilers (gcc, llvm)

Cons:

Still limited to arrays
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Still Limited to Arrays, the Whys?

1

2

3

Properties Array Pointers

Contiguous in Memory Ë é
Random Access Ë é

· 2 ·

· 1 · · 3 ·
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Still Limited to Arrays, the Whys?

1

2

3

Properties Array Pointers

Contiguous in Memory Ë é
Random Access Ë é

Other nice data structures?

· 2 ·

· 1 · · 3 ·
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Research Questions

Are Algebraic Data Types Regular Enough?

How to Compile ADTs reshaping efficiently?
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Are Algebraic Data Types
Regular Enough?

Mon. 2 May 2022 PhD Defense 9/42



Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

type suit =

| Heart

| Diamond

| Clubs

| Spade

type value =

| Ace

| King

| Queen

| Jack

| Number of int

type card = (suit, value)

A simple ADT
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type expr =

| Cst of int

| Add of expr * expr

| Mul of expr * expr

let rec eval = function

| Cst (i) -> i

| Add (e1, e2) -> eval e1 + eval e2

| Mul (e1, e2) -> eval e1 * eval e2

(* 1 + 2 * 3 = 7 *)

eval (Add(Cst(1), Mul(Cst(2), Cst(3)))

The expr ADT and its eval function

+

1 ×

2 3

This is “regular”, isn’t it?
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How Are Encoded ADTs Into Memory?

The constant part (enumeration with arguments) has a fixed size

The recursion is captured by using pointers

But pointers = no predictability

What about exploiting the regular properties of ADTs...
...and store them into arrays!
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How Are Encoded ADTs Into Memory?

The constant part (enumeration with arguments) has a fixed size

The recursion is captured by using pointers
struct tree {

int val;

struct tree *left, *right;

};

· 2 ·

· 1 · · 3 ·
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Breadth-first Layout and Its Properties

1

2 3

6 7

≡ 1 2 3 6 7

A notion of layers

A simple formula for finding parent and children (it’s a shift away)

The tree can be compressed, if only values matter.

Insertion happens at the end, or in a hole
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Breadth-first Layout and Its Properties

1

2 3

6 7

≡ 1 2 3 6 71 2 3 6 7

2 · 3

2 · 3 + 1

A notion of layers

A simple formula for finding parent and children (it’s a shift away)

The tree can be compressed, if only values matter.

Insertion happens at the end, or in a hole
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The Layer Tower

A0 A1 A2 A3 ⇐⇒
A0

A1

A2

A3

Figure: A graphical notation
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Other Layouts

Variation without holes

Obviously, depth-first layout

Cache oblivious community has designed many byzantine layouts

Most famous: Van Em Boas Layout (see manuscript)

The rest of the presentation uses the breadth-first layout
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A Data-Structure to Study

We want a data-structure:

which is actually used

which would benefit from optimizations

which is neither to complex nor to simple

We chose AVL Trees
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type avl =

| Empty

| Node of avl * int * avl

Operations:

Insert/Delete/Find

Rotations (Structural
Modifications)

4

2 5

1 3 6

Figure: An AVL

x

A
y

B
z

C D

(a) A binary tree T

y

x z

A B C D

(b) T after L-rotation
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AVL Implementation

AVL with pointers Implicit layout (Tarbres)

Rotations are easy and cheap O(1) Rotations in place?
Bad cache behavior (find/map) Nice cache behavior (find/map)
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AVL Rebalancing: Low Level Operations 1/2

A0

A1

A2

iA
A0

A1

A2

iB

shift A to iB

shift A to iA

Figure: Subtree shifts
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AVL Rebalancing: Low Level Operations 1/2

A0

A1

A2

A0

A1

A2

pull up A

pull down left A

Figure: Subtree pull-ups and pull-downs
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AVL Rebalancing: Hands on!

x

A
y

B
z

C D

Original Unbalanced State

Pull Down (Left) A
Shift Left B
Rename

Move up (z-B-C)
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AVL Rebalancing: Hands on!

y

x

A

.

B
z

C D

Original Unbalanced State

Pull Down (Left) A
Shift Left B
Rename

Move up (z-B-C)
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AVL Rebalancing: Hands on!

y

x z

A B C D

Original Unbalanced State

Pull Down (Left) A
Shift Left B
Rename

Move up (z-B-C)
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Implementation

Support for insert/delete/find/map

Rotation as a combination of low-level operations

Support for scalar-type and pointer-type values

The low-level operations can be:

Naive: move one layer at a time
Pipelined: try to start the next move as soon as possible
Parallelized

Available at: https://gitlab.inria.fr/paiannet/calv/

Mon. 2 May 2022 PhD Defense 22/42
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Benchmark on a Key-Value Store Scenario (N = 1M ≈ 220)

A benchmark adapted from the database community
Scenario:

Emulate a key-value database
Check the performance of pointers vs arrays.

fillRandom(N) deleteRandom(N/2) readRandom(N/2) fillRandom(N/2)
0.5

1.0

1.5

Ti
m

e 
(s

)

1.54s 1.56s

0.731s

0.459s

1.46s

1.11s
0.952s

0.747s

AVL (pointers)
Tarbre (implicit)

Array based key-value store performs better!
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Summary of the Contribution

Implemented as a small library (calv)

We tried to exploit the parallelism of the low-level operations

It works!

Hand Tuned

Improve parallelism

Improve granularity of low level operations

Let’s try to automate!
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How to compile ADTs
reshaping efficiently?
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Our Proposition: Rew (A DSL to Compile Structural Transformations)

Rew is small DSL to:

Algebraic Data Types without sharing

describe structural transformations on
those through pattern matching.

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {

| Node(a,i,Node(b,j,c)) -> Node(b,j,c)

| Node(a,i,Empty) -> Empty

| Empty -> Empty

}

Figure: What REW looks like
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Compilation Steps

1 Give the specifications (describe the types & the transformations)

2 Figure out the movements

3 Compute the dependences between the movements

4 Reschedule the movements

5 Generate the code
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Step 1: Describe Structural Transformations

BC

BC
pull up BC

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {

| Node(a,i,Node(b,j,c)) -> Node(b,j,c)

| Node(a,i,Empty) -> Empty

| Empty -> Empty

}

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code
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Use Layers to Subdivide Memory Movements

A0 A1 A2 A3 ⇐⇒
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Step 2: Layer-aware movements (1/2)
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Step 2: Layer-aware movements (2/2)

Node(a,i,Node(b,j, c )) -> Node(b,j,c)

f

e

d

c ′
1th iteration order (variable k2)
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iD
C′0
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2
n
d

iteration
ord

er
(variab

le
k

3 )3rd iteration order (memcpy)

L . 2. 2→ . 2 M 

{
L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M (c1)

L . 2. 2. 2k2. 0. ϕk3 → . 2. 2k2. 0. ϕk3 M (c0)
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Step 3: Characterizing Memory Movements
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Polyhedral Like Dependencies: Intuition
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Step 5: Polyhedral Model Based Scheduling
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Step 6: From Schedule to Code

Node(a,i,Node(b,j,c)) -> Node(b,j,c)
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Conflict analysis: The Details

Theorem

Let L s1 → d1 M and L s2 → d2 M be two moves (not necessarily distinct). If we consider
d1 and s2 as regular expressions.
Then,
L(d1) ∩ L(s2) is the conflict space and it can be characterized by affine inequalities.

Conflict analysis: Compute the dependences for all tuples of movements
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Summary of the Contribution

Promising technique to compile pattern matching-based structural transformations

Extension of the polyhedral techniques to a different class of regular programs

Front end for ADTs which plugs into the polyhedral model
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Conclusion & Contributions List

Are Algebraic Data Types Regular Enough?

Yes, but the layout is important
Parallelization opportunities
Implemented as a small library
Better exploited through automation

How to Compile ADTs reshaping efficiently?

A framework to compile structural transformation
Reuse polyhedral ideas
Partial implementation by Gabriel

Another Model for the Input Language of the Polyhedral Model?

A framework to extend the polyhedral model
Based on a modified operational semantics
Enabling future non-exact extensions
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Future Work

Extend REW:

Add recursion, guards
Add support for functions

Improve the compilation of REW

Generate parallel code
Improve parallel cache
performance

Continue to explore reformulation
of the polyhedral model input
language
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Thank you for your attention

Questions?
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