
Compiling Trees
Combining Data Layouts and the Polyhedral Model

Paul Iannetta (ENS de Lyon, Inria & LIP)

paul.iannetta@ens-lyon.fr

Jury:
Charles Henri-Pierre, Rapporteur.
Clauss Philippe, Rapporteur.
Collange Caroline, Examinatrice.
Keller Gabriele, Examinatrice.

Gonnord Laure, Directrice de thèse.
Radanne Gabriel, Co-encadrant.
Morel Lionel, Co-encadrant.
Meister Benôıt, Guest

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

What is Compilation?

Programmers want to write easy to maintain software

Offload complexity to the compiler (Hardware diversity)

We don’t want that people write hand tuned code.

... the compiler has to be smart enough to use the hardware cleverly enough

let’s talk a bit about the hardware...

Mon. 2 May 2022 PhD Defense 1/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

The Basic Blocks Around a CPU

Memory contains everything (slow – 50 ∼ 100ns)

Cache contains only the bare minimum (fast – 0.5 ∼ 7ns)

Mon. 2 May 2022 PhD Defense 2/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Programs Which Play Well With The Hardware

Programs whose behavior can be accurately predicted (control flow)

The CPU always knows what to do

Programs with predictable read/write patterns (io patterns)

Prefetch and fill the cache from memory
Avoid waiting for data

Programs with independant parts (parallelism opportunities)

Share the work between CPUs
Better use of system ressources

Mon. 2 May 2022 PhD Defense 3/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Programs Which Play Well With The Hardware

Programs whose behavior can be accurately predicted (control flow)

The CPU always knows what to do

Programs with predictable read/write patterns (io patterns)

Prefetch and fill the cache from memory
Avoid waiting for data

Programs with independant parts (parallelism opportunities)

Share the work between CPUs
Better use of system ressources

Mon. 2 May 2022 PhD Defense 3/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Programs Which Play Well With The Hardware

Programs whose behavior can be accurately predicted (control flow)

The CPU always knows what to do

Programs with predictable read/write patterns (io patterns)

Prefetch and fill the cache from memory
Avoid waiting for data

Programs with independant parts (parallelism opportunities)

Share the work between CPUs
Better use of system ressources

Mon. 2 May 2022 PhD Defense 3/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Change the loop traversal

Improve inter-instruction parallelism

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Change the loop traversal

Improve inter-instruction parallelism

i

j

1

N − 1

1 N − 1 2N − 2

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Change the loop traversal

Improve inter-instruction parallelism

i

j

1

N − 1

1 N − 1 2N − 2

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Change the loop traversal

Improve inter-instruction parallelism

i

j

1

N − 1

1 N − 1 2N − 2

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Change the loop traversal

Improve inter-instruction parallelism

i

j

1

N − 1

1 N − 1 2N − 2

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Change the loop traversal

Improve inter-instruction parallelism

i

j

1

N − 1

1 N − 1 2N − 2

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Change the loop traversal

Improve inter-instruction parallelism

i

j

1

N − 1

1 N − 1 2N − 2

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Change the loop traversal

Improve inter-instruction parallelism

i

j

1

N − 1

1 N − 1 2N − 2

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Very Nice Loop

for (int i = 1 ; i < N ; ++i)

for (int j = 1 ; j < N ; ++j)

/* s: */ A[i][j] = A[i][j-1] + A[i-1][j];

Statement
Dependence

i

j

1

N − 1

1 N − 1

Change the loop traversal

Improve inter-instruction parallelism

i

j

1

N − 1

1 N − 1 2N − 2

Mon. 2 May 2022 PhD Defense 4/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

What About the Real World?

Linear Algebra kernels

Simulations

Machine learning

Image Processing

...

for (int i = 0 ; i < N ; ++i)

for (int j = 0 ; j < N ; ++i)

B[i][j] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1]

+ A[i][j-1] + A[i][j] + A[i][j+1]

+ A[i+1][j-1] + A[i+1][j] + A[i+1][j+1])

/ 9.0

Uniform Blur

Mon. 2 May 2022 PhD Defense 5/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

The Polyhedral Model

The Polyhedral Model (French Success Story since 1991!)

Compiles programs with affine loops ranging over arrays accessed with affine
functions into efficient C code by: 1) Analysing dependencies, 2) Reschedule
the instructions, 3) Generate C code.

Pros:

The best tool when it comes to polyhedral programs

30-year of active research and improvements

Available in productions compilers (gcc, llvm)

Cons:

Still limited to arrays

Mon. 2 May 2022 PhD Defense 6/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Still Limited to Arrays, the Whys?

1

2

3

Properties Array Pointers

Contiguous in Memory Ë é
Random Access Ë é

· 2 ·

· 1 · · 3 ·

Mon. 2 May 2022 PhD Defense 7/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Still Limited to Arrays, the Whys?

1

2

3

Properties Array Pointers

Contiguous in Memory Ë é
Random Access Ë é

Other nice data structures?

· 2 ·

· 1 · · 3 ·

Mon. 2 May 2022 PhD Defense 7/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Research Questions

Are Algebraic Data Types Regular Enough?

How to Compile ADTs reshaping efficiently?

Mon. 2 May 2022 PhD Defense 8/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Are Algebraic Data Types
Regular Enough?

Mon. 2 May 2022 PhD Defense 9/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

type suit =

| Heart

| Diamond

| Clubs

| Spade

type value =

| Ace

| King

| Queen

| Jack

| Number of int

type card = (suit, value)

A simple ADT

Mon. 2 May 2022 PhD Defense 10/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

type expr =

| Cst of int

| Add of expr * expr

| Mul of expr * expr

let rec eval = function

| Cst (i) -> i

| Add (e1, e2) -> eval e1 + eval e2

| Mul (e1, e2) -> eval e1 * eval e2

(* 1 + 2 * 3 = 7 *)

eval (Add(Cst(1), Mul(Cst(2), Cst(3)))

The expr ADT and its eval function

+

1 ×

2 3

This is “regular”, isn’t it?

Mon. 2 May 2022 PhD Defense 11/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

How Are Encoded ADTs Into Memory?

The constant part (enumeration with arguments) has a fixed size

The recursion is captured by using pointers

But pointers = no predictability

What about exploiting the regular properties of ADTs...
...and store them into arrays!

Mon. 2 May 2022 PhD Defense 12/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

How Are Encoded ADTs Into Memory?

The constant part (enumeration with arguments) has a fixed size

The recursion is captured by using pointers
struct tree {

int val;

struct tree *left, *right;

};

· 2 ·

· 1 · · 3 ·

But pointers = no predictability

What about exploiting the regular properties of ADTs...
...and store them into arrays!

Mon. 2 May 2022 PhD Defense 12/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

How Are Encoded ADTs Into Memory?

The constant part (enumeration with arguments) has a fixed size

The recursion is captured by using pointers

But pointers = no predictability

What about exploiting the regular properties of ADTs...
...and store them into arrays!

Mon. 2 May 2022 PhD Defense 12/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

How Are Encoded ADTs Into Memory?

The constant part (enumeration with arguments) has a fixed size

The recursion is captured by using pointers

But pointers = no predictability

What about exploiting the regular properties of ADTs...
...and store them into arrays!

Mon. 2 May 2022 PhD Defense 12/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Breadth-first Layout and Its Properties

1

2 3

6 7

≡ 1 2 3 6 7

A notion of layers

A simple formula for finding parent and children (it’s a shift away)

The tree can be compressed, if only values matter.

Insertion happens at the end, or in a hole

Mon. 2 May 2022 PhD Defense 13/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Breadth-first Layout and Its Properties

1

2 3

6 7

≡ 1 2 3 6 71 2 3 6 7

A notion of layers

A simple formula for finding parent and children (it’s a shift away)

The tree can be compressed, if only values matter.

Insertion happens at the end, or in a hole

Mon. 2 May 2022 PhD Defense 13/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Breadth-first Layout and Its Properties

1

2 3

6 7

≡ 1 2 3 6 71 2 3 6 7

2 · 3

2 · 3 + 1

A notion of layers

A simple formula for finding parent and children (it’s a shift away)

The tree can be compressed, if only values matter.

Insertion happens at the end, or in a hole

Mon. 2 May 2022 PhD Defense 13/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Breadth-first Layout and Its Properties

6

3 7

1 2

≡ 6 3 7 1 2

A notion of layers

A simple formula for finding parent and children (it’s a shift away)

The tree can be compressed, if only values matter.

Insertion happens at the end, or in a hole

Mon. 2 May 2022 PhD Defense 13/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Breadth-first Layout and Its Properties

6

3 7

1 2

≡ 6 3 7 1 2

A notion of layers

A simple formula for finding parent and children (it’s a shift away)

The tree can be compressed, if only values matter.

Insertion happens at the end, or in a hole

Mon. 2 May 2022 PhD Defense 13/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

The Layer Tower

A0 A1 A2 A3 ⇐⇒
A0

A1

A2

A3

Figure: A graphical notation

Mon. 2 May 2022 PhD Defense 14/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Other Layouts

Variation without holes

Obviously, depth-first layout

Cache oblivious community has designed many byzantine layouts

Most famous: Van Em Boas Layout (see manuscript)

The rest of the presentation uses the breadth-first layout

Mon. 2 May 2022 PhD Defense 15/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Other Layouts

Variation without holes

Obviously, depth-first layout

Cache oblivious community has designed many byzantine layouts

Most famous: Van Em Boas Layout (see manuscript)

The rest of the presentation uses the breadth-first layout

Mon. 2 May 2022 PhD Defense 15/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Data-Structure to Study

We want a data-structure:

which is actually used

which would benefit from optimizations

which is neither to complex nor to simple

We chose AVL Trees

Mon. 2 May 2022 PhD Defense 16/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

A Data-Structure to Study

We want a data-structure:

which is actually used

which would benefit from optimizations

which is neither to complex nor to simple

We chose AVL Trees

Mon. 2 May 2022 PhD Defense 16/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

type avl =

| Empty

| Node of avl * int * avl

Operations:

Insert/Delete/Find

Rotations (Structural
Modifications)

4

2 5

1 3 6

Figure: An AVL

x

A
y

B
z

C D

(a) A binary tree T

y

x z

A B C D

(b) T after L-rotation
Mon. 2 May 2022 PhD Defense 17/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

AVL Implementation

AVL with pointers Implicit layout (Tarbres)

Rotations are easy and cheap O(1) Rotations in place?
Bad cache behavior (find/map) Nice cache behavior (find/map)

Mon. 2 May 2022 PhD Defense 18/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

AVL Rebalancing: Low Level Operations 1/2

A0

A1

A2

iA
A0

A1

A2

iB

shift A to iB

shift A to iA

Figure: Subtree shifts

Mon. 2 May 2022 PhD Defense 19/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

AVL Rebalancing: Low Level Operations 1/2

A0

A1

A2

A0

A1

A2

pull up A

pull down left A

Figure: Subtree pull-ups and pull-downs

Mon. 2 May 2022 PhD Defense 20/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

AVL Rebalancing: Hands on!

x

A
y

B
z

C D

Original Unbalanced State

Pull Down (Left) A
Shift Left B
Rename

Move up (z-B-C)

Mon. 2 May 2022 PhD Defense 21/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

AVL Rebalancing: Hands on!

x

.

A

y

B
z

C D

Original Unbalanced State

Pull Down (Left) A

Shift Left B
Rename

Move up (z-B-C)

Mon. 2 May 2022 PhD Defense 21/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

AVL Rebalancing: Hands on!

x

.

A

y

B
z

C D

Original Unbalanced State

Pull Down (Left) A
Shift Left B

Rename

Move up (z-B-C)

Mon. 2 May 2022 PhD Defense 21/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

AVL Rebalancing: Hands on!

y

x

A

.

B
z

C D

Original Unbalanced State

Pull Down (Left) A
Shift Left B
Rename

Move up (z-B-C)

Mon. 2 May 2022 PhD Defense 21/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

AVL Rebalancing: Hands on!

y

x z

A B C D

Original Unbalanced State

Pull Down (Left) A
Shift Left B
Rename

Move up (z-B-C)

Mon. 2 May 2022 PhD Defense 21/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Implementation

Support for insert/delete/find/map

Rotation as a combination of low-level operations

Support for scalar-type and pointer-type values

The low-level operations can be:

Naive: move one layer at a time
Pipelined: try to start the next move as soon as possible
Parallelized

Available at: https://gitlab.inria.fr/paiannet/calv/

Mon. 2 May 2022 PhD Defense 22/42

https://gitlab.inria.fr/paiannet/calv/

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Benchmark on a Key-Value Store Scenario (N = 1M ≈ 220)

A benchmark adapted from the database community
Scenario:

Emulate a key-value database
Check the performance of pointers vs arrays.

fillRandom(N) deleteRandom(N/2) readRandom(N/2) fillRandom(N/2)
0.5

1.0

1.5

Ti
m

e
(s

)

1.54s 1.56s

0.731s

0.459s

1.46s

1.11s
0.952s

0.747s

AVL (pointers)
Tarbre (implicit)

Array based key-value store performs better!

Mon. 2 May 2022 PhD Defense 23/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Benchmark on a Key-Value Store Scenario (N = 1M ≈ 220)

A benchmark adapted from the database community
Scenario:

Emulate a key-value database
Check the performance of pointers vs arrays.

fillRandom(N) deleteRandom(N/2) readRandom(N/2) fillRandom(N/2)
0.5

1.0

1.5

Ti
m

e
(s

)

1.54s 1.56s

0.731s

0.459s

1.46s

1.11s
0.952s

0.747s

AVL (pointers)
Tarbre (implicit)

Array based key-value store performs better!

Mon. 2 May 2022 PhD Defense 23/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Summary of the Contribution

Implemented as a small library (calv)

We tried to exploit the parallelism of the low-level operations

It works!

Hand Tuned

Improve parallelism

Improve granularity of low level operations

Let’s try to automate!

Mon. 2 May 2022 PhD Defense 24/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Summary of the Contribution

Implemented as a small library (calv)

We tried to exploit the parallelism of the low-level operations

It works!

Hand Tuned

Improve parallelism

Improve granularity of low level operations

Let’s try to automate!

Mon. 2 May 2022 PhD Defense 24/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Summary of the Contribution

Implemented as a small library (calv)

We tried to exploit the parallelism of the low-level operations

It works!

Hand Tuned

Improve parallelism

Improve granularity of low level operations

Let’s try to automate!

Mon. 2 May 2022 PhD Defense 24/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Summary of the Contribution

Implemented as a small library (calv)

We tried to exploit the parallelism of the low-level operations

It works!

Hand Tuned

Improve parallelism

Improve granularity of low level operations

Let’s try to automate!

Mon. 2 May 2022 PhD Defense 24/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

How to compile ADTs
reshaping efficiently?

Mon. 2 May 2022 PhD Defense 25/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Our Proposition: Rew (A DSL to Compile Structural Transformations)

Rew is small DSL to:

Algebraic Data Types without sharing

describe structural transformations on
those through pattern matching.

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {

| Node(a,i,Node(b,j,c)) -> Node(b,j,c)

| Node(a,i,Empty) -> Empty

| Empty -> Empty

}

Figure: What REW looks like

Mon. 2 May 2022 PhD Defense 26/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Compilation Steps

1 Give the specifications (describe the types & the transformations)

2 Figure out the movements

3 Compute the dependences between the movements

4 Reschedule the movements

5 Generate the code

Mon. 2 May 2022 PhD Defense 27/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 1: Describe Structural Transformations

BC

BC
pull up BC

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {

| Node(a,i,Node(b,j,c)) -> Node(b,j,c)

| Node(a,i,Empty) -> Empty

| Empty -> Empty

}

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 28/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 1: Describe Structural Transformations

BC

BC
pull up BC

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {

| Node(a,i,Node(b,j,c)) -> Node(b,j,c)

| Node(a,i,Empty) -> Empty

| Empty -> Empty

}

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 28/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 1: Describe Structural Transformations

BC

BC
pull up BC

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {

| Node(a,i,Node(b,j,c)) -> Node(b,j,c)

| Node(a,i,Empty) -> Empty

| Empty -> Empty

}

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 28/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 1: Describe Structural Transformations

BC

BC
pull up BC

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {

| Node(a,i,Node(b,j,c)) -> Node(b,j,c)

| Node(a,i,Empty) -> Empty

| Empty -> Empty

}

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 28/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Our Notations for Paths

type tree = Empty | Node (t
.0
ree,

.1
int,t

.2
ree)

1

2 3

4 5 6 7

ε

Mon. 2 May 2022 PhD Defense 29/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Our Notations for Paths

type tree = Empty | Node (t
.0
ree,

.1
int,t

.2
ree)

1

2 3

4 5 6 7

. 1

Mon. 2 May 2022 PhD Defense 29/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Our Notations for Paths

type tree = Empty | Node (t
.0
ree,

.1
int,t

.2
ree)

1

2 3

4 5 6 7

. 0

Mon. 2 May 2022 PhD Defense 29/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Our Notations for Paths

type tree = Empty | Node (t
.0
ree,

.1
int,t

.2
ree)

1

2 3

4 5 6 7

. 0. 0 ≡ (. 0)2

Mon. 2 May 2022 PhD Defense 29/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Our Notations for Paths

type tree = Empty | Node (t
.0
ree,

.1
int,t

.2
ree)

1

2 3

4 5 6 7

(. 0)2. 1

Mon. 2 May 2022 PhD Defense 29/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Our Notations for Paths

type tree = Empty | Node (t
.0
ree,

.1
int,t

.2
ree)

1

2 3

4 5 6 7

. 2. 1

Mon. 2 May 2022 PhD Defense 29/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Our Notations for Paths

type tree = Empty | Node (t
.0
ree,

.1
int,t

.2
ree)

1

2 3

4 5 6 7

ϕ

Mon. 2 May 2022 PhD Defense 29/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Our Notations for Paths

type tree = Empty | Node (t
.0
ree,

.1
int,t

.2
ree)

1

2 3

4 5 6 7

ϕ.ϕ

Mon. 2 May 2022 PhD Defense 29/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Compute Subtree Movements

Node(a , i ,Node(b , j , c)) -> Node(b , j , c)

A

B C

B C

pull up BC
L a : tree | . 0 → ∅ M

L i : int | . 1 → ∅ M
L b : tree | . 2. 0 → . 0 M
L j : int | . 2. 1 → . 1 M
L c : tree | . 2. 2 → . 2 M

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 30/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Compute Subtree Movements

Node(a , i ,Node(b , j , c)) -> Node(b , j , c)

A

B C

B C

pull up BC
L a : tree | . 0 → ∅ M

L i : int | . 1 → ∅ M
L b : tree | . 2. 0 → . 0 M
L j : int | . 2. 1 → . 1 M
L c : tree | . 2. 2 → . 2 M

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 30/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Compute Subtree Movements

Node(a , i ,Node(b , j , c)) -> Node(b , j , c)

A

B C

B C

pull up BC
L a : tree | . 0 → ∅ M

L i : int | . 1 → ∅ M
L b : tree | . 2. 0 → . 0 M
L j : int | . 2. 1 → . 1 M
L c : tree | . 2. 2 → . 2 M

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 30/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Compute Subtree Movements

Node(a , i ,Node(b , j , c)) -> Node(b , j , c)

A

B C

B X C

pull up BC
L a : tree | . 0 → ∅ M

L i : int | . 1 → ∅ M
L b : tree | . 2. 0 → . 0 M
L j : int | . 2. 1 → . 1 M
L c : tree | . 2. 2 → . 2 M

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 30/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Compute Subtree Movements

Node(a , i ,Node(b , j , c)) -> Node(b , j , c)

A

B C

B X

X

C

pull up BC
L a : tree | . 0 → ∅ M

L i : int | . 1 → ∅ M
L b : tree | . 2. 0 → . 0 M
L j : int | . 2. 1 → . 1 M
L c : tree | . 2. 2 → . 2 M

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 30/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Compute Subtree Movements

Node(a , i ,Node(b , j , c)) -> Node(b , j , c)

A

B C

B X

X

C

pull up BC
L a : tree | . 0 → ∅ M

L i : int | . 1 → ∅ M
L b : tree | . 2. 0 → . 0 M
L j : int | . 2. 1 → . 1 M
L c : tree | . 2. 2 → . 2 M

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 30/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Use Layers to Subdivide Memory Movements

A0 A1 A2 A3 ⇐⇒
A0

A1

A2

A3

Mon. 2 May 2022 PhD Defense 31/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Layer-aware movements (1/2)

Node(a , i ,Node(b , j ,c)) -> Node(b , j ,c)

A0

A1

A2

B0

B1

B2

C0

C1

C2

iA

iB iC

L . 0 → ∅ M ∀k0, L . 0.ϕk0 → ∅ M
L . 1 → ∅ M L . 1 → ∅ M
L . 2. 0 → . 0 M ∀k1, L . 2. 0.ϕk1 → . 0.ϕk1 M
L . 2. 1 → . 1 M L . 2. 1 → . 1 M
L . 2. 2 → . 2 M ?

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 32/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Layer-aware movements (1/2)

Node(a , i ,Node(b , j ,c)) -> Node(b , j ,c)

A0

A1

A2

B0

B1

B2

C0

C1

C2

iA

iB iC

L . 0 → ∅ M ∀k0, L . 0.ϕk0 → ∅ M
L . 1 → ∅ M L . 1 → ∅ M
L . 2. 0 → . 0 M ∀k1, L . 2. 0.ϕk1 → . 0.ϕk1 M
L . 2. 1 → . 1 M L . 2. 1 → . 1 M
L . 2. 2 → . 2 M ?

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 32/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Layer-aware movements (1/2)

Node(a , i ,Node(b , j ,c)) -> Node(b , j ,c)

A0

A1

A2

B0

B1

B2

C0

C1

C2

iA

iB iC

L . 0 → ∅ M ∀k0, L . 0.ϕk0 → ∅ M
L . 1 → ∅ M L . 1 → ∅ M
L . 2. 0 → . 0 M ∀k1, L . 2. 0.ϕk1 → . 0.ϕk1 M
L . 2. 1 → . 1 M L . 2. 1 → . 1 M
L . 2. 2 → . 2 M ?

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 32/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Layer-aware movements (1/2)

Node(a , i ,Node(b , j ,c)) -> Node(b , j ,c)

A0

A1

A2

B0

B1

B2

C0

C1

C2

iA

iB iC

L . 0 → ∅ M ∀k0, L . 0.ϕk0 → ∅ M
L . 1 → ∅ M L . 1 → ∅ M
L . 2. 0 → . 0 M ∀k1, L . 2. 0.ϕk1 → . 0.ϕk1 M
L . 2. 1 → . 1 M L . 2. 1 → . 1 M
L . 2. 2 → . 2 M ?

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 32/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Layer-aware movements (1/2)

Node(a , i ,Node(b , j ,c)) -> Node(b , j ,c)

A0

A1

A2

B0

B1

B2

C0

C1

C2

iA

iB iC

L . 0 → ∅ M ∀k0, L . 0.ϕk0 → ∅ M
L . 1 → ∅ M L . 1 → ∅ M
L . 2. 0 → . 0 M ∀k1, L . 2. 0.ϕk1 → . 0.ϕk1 M
L . 2. 1 → . 1 M L . 2. 1 → . 1 M
L . 2. 2 → . 2 M ?

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 32/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Layer-aware movements (1/2)

Node(a , i ,Node(b , j ,c)) -> Node(b , j ,c)

A0

A1

A2

B0

B1

B2

C0

C1

C2

iA

iB iC

L . 0 → ∅ M ∀k0, L . 0.ϕk0 → ∅ M
L . 1 → ∅ M L . 1 → ∅ M
L . 2. 0 → . 0 M ∀k1, L . 2. 0.ϕk1 → . 0.ϕk1 M
L . 2. 1 → . 1 M L . 2. 1 → . 1 M
L . 2. 2 → . 2 M ?

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 32/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 2: Layer-aware movements (2/2)

Node(a,i,Node(b,j, c)) -> Node(b,j,c)

f

e

d

c ′
1th iteration order (variable k2)

F0

F1

F2

iF
E0

E1

E2

iED0

D1

D2

iD
C′0

C′1

C′2

iC′

2
n
d

iteration
ord

er
(variab

le
k

3)3rd iteration order (memcpy)

L . 2. 2→ . 2 M

{
L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M (c1)

L . 2. 2. 2k2. 0. ϕk3 → . 2. 2k2. 0. ϕk3 M (c0)

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 33/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 3: Characterizing Memory Movements

k3

k1, k2

0

N − 2

0 N − 2

A0

A1

A2

B0

B1

B2

C0

C1

C2

iA

iB iC N

N − 2

L . 2. 0. ϕk1 → . 0. ϕk1 M (b)

L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M (c1)

L . 2. 2. 2k2. 0. ϕk3 → . 2. 2k2. 0. ϕk3 M (c0)

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 34/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 3: Characterizing Memory Movements

k3

k1, k2

0

N − 2

0 N − 2

A0

A1

A2

B0

B1

B2

C0

C1

C2

iA

iB iC N

N − 2

L . 2. 0. ϕk1 → . 0. ϕk1 M (b)

L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M (c1)

L . 2. 2. 2k2. 0. ϕk3 → . 2. 2k2. 0. ϕk3 M (c0)

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 34/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 3: Characterizing Memory Movements

k3

k1, k2

0

N − 2

0 N − 2

A0

A1

A2

B0

B1

B2

B0

B1

B2

C0

C1

C2

iA

iB iC N

N − 2

L . 2. 0. ϕk1 → . 0. ϕk1 M (b)

L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M (c1)

L . 2. 2. 2k2. 0. ϕk3 → . 2. 2k2. 0. ϕk3 M (c0)

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 34/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 3: Characterizing Memory Movements

k3

k1, k2

0

N − 2

0 N − 2

A0

A1

A2

B0

B1

B2

B0

B1

B2

C0

C1

C2

C0

C1

C2

iA

iB iC N

N − 2

L . 2. 0. ϕk1 → . 0. ϕk1 M (b)

L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M (c1)

L . 2. 2. 2k2. 0. ϕk3 → . 2. 2k2. 0. ϕk3 M (c0)

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 34/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Polyhedral Like Dependencies: Intuition

k3

k1, k2

0

N − 2

0 N − 2

Let’s take the rule (c0): L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M

Mon. 2 May 2022 PhD Defense 35/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Polyhedral Like Dependencies: Intuition

k3

k1, k2

0

N − 2

0 N − 2

Let’s take the rule (c0): L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M

When k2 = 1, (c0): L (. 2)3 . 1 → (. 2)2. 1 M

When k2 = 2, (c0): L (. 2)4. 1→ (. 2)3. 1 M

More generally, (c0)(k) and (c0)(k + 1)
conflict.

Mon. 2 May 2022 PhD Defense 35/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Polyhedral Like Dependencies: Intuition

k3

k1, k2

0

N − 2

0 N − 2

Let’s take the rule (c0): L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M

When k2 = 1, (c0): L (. 2)3 . 1 → (. 2)2. 1 M

When k2 = 2, (c0): L (. 2)4. 1→ (. 2)3. 1 M

More generally, (c0)(k) and (c0)(k + 1)
conflict.

Mon. 2 May 2022 PhD Defense 35/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Polyhedral Like Dependencies: Intuition

k3

k1, k2

0

N − 2

0 N − 2

Let’s take the rule (c0): L . 2. 2. 2k2. 1→ . 2. 2k2. 1 M

When k2 = 1, (c0): L (. 2)3 . 1 → (. 2)2. 1 M

When k2 = 2, (c0): L (. 2)4. 1→ (. 2)3. 1 M

More generally, (c0)(k) and (c0)(k + 1)
conflict.

Mon. 2 May 2022 PhD Defense 35/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 5: Polyhedral Model Based Scheduling

k3

k1, k2

0

N − 2

0 N − 2

Scheduling by Farkas

and ILP Solver

j

i

0

N − 2

0 N − 2

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 36/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 6: From Schedule to Code

Node(a,i,Node(b,j,c)) -> Node(b,j,c)

j

i

0

N − 2

0 N − 2

Application of Quilleré’s Algorithm

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 37/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 6: From Schedule to Code

Node(a,i,Node(b,j,c)) -> Node(b,j,c)

for (i = 0 ; i <= 0 ; i += 1)

for (i = 1 ; i <= N-2 ; i+= 1)

j

i

0

N − 2

0 N − 2

Application of Quilleré’s Algorithm

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 37/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 6: From Schedule to Code

Node(a,i,Node(b,j,c)) -> Node(b,j,c)

for (i = 0 ; i <= 0 ; i += 1)

for (j = 0 ; j <= N-2 ; j += 1)

for (i = 1 ; i <= N-2 ; i+= 1)

j

i

0

N − 2

0 N − 2

Application of Quilleré’s Algorithm

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 37/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 6: From Schedule to Code

Node(a,i,Node(b,j,c)) -> Node(b,j,c)

for (i = 0 ; i <= 0 ; i += 1)

for (j = 0 ; j <= N-2 ; j += 1)

L . 2. 0.ϕj → . 0.ϕj M // b

for (i = 1 ; i <= N-2 ; i+= 1)

j

i

0

N − 2

0 N − 2

Application of Quilleré’s Algorithm

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 37/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 6: From Schedule to Code

Node(a,i,Node(b,j,c)) -> Node(b,j,c)

for (i = 0 ; i <= 0 ; i += 1)

for (j = 0 ; j <= N-2 ; j += 1)

L . 2. 0.ϕj → . 0.ϕj M // b

for (i = 1 ; i <= N-2 ; i+= 1)

for (j = 0 ; j <= 0 ; j += 1)

for (j = 0 ; j <= N - i - 2 ; j += 1)

j

i

0

N − 2

0 N − 2

Application of Quilleré’s Algorithm

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 37/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 6: From Schedule to Code

Node(a,i,Node(b,j,c)) -> Node(b,j,c)

for (i = 0 ; i <= 0 ; i += 1)

for (j = 0 ; j <= N-2 ; j += 1)

L . 2. 0.ϕj → . 0.ϕj M // b

for (i = 1 ; i <= N-2 ; i+= 1)

for (j = 0 ; j <= 0 ; j += 1)

L (. 2)i+1. 1 → (. 2)i. 1 M //c1

for (j = 0 ; j <= N - i - 2 ; j += 1)

L (. 2)i+1. 0.ϕj → (. 2)i. 0.ϕj M //c0

j

i

0

N − 2

0 N − 2

Application of Quilleré’s Algorithm

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 37/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Step 6: From Schedule to Code

Node(a,i,Node(b,j,c)) -> Node(b,j,c)

for (j = 0 ; j <= N-2 ; j += 1)

L . 2. 0.ϕj → . 0.ϕj M // b

for (i = 1 ; i <= N-2 ; i+= 1)

L (. 2)i+1. 1 → (. 2)i. 1 M //c1

for (j = 0 ; j <= N - i - 2 ; j += 1)

L (. 2)i+1. 0.ϕj → (. 2)i. 0.ϕj M //c0

j

i

0

N − 2

0 N − 2

Application of Quilleré’s Algorithm

Rew Code

Memory
movements

Polyhedral
Representation

Polyhedral
Schedule

C Code

Mon. 2 May 2022 PhD Defense 37/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Conflict analysis: The Details

Theorem

Let L s1 → d1 M and L s2 → d2 M be two moves (not necessarily distinct). If we consider
d1 and s2 as regular expressions.
Then,
L(d1) ∩ L(s2) is the conflict space and it can be characterized by affine inequalities.

Conflict analysis: Compute the dependences for all tuples of movements

Mon. 2 May 2022 PhD Defense 38/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Summary of the Contribution

Promising technique to compile pattern matching-based structural transformations

Extension of the polyhedral techniques to a different class of regular programs

Front end for ADTs which plugs into the polyhedral model

Mon. 2 May 2022 PhD Defense 39/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Summary of the Contribution

Promising technique to compile pattern matching-based structural transformations

Extension of the polyhedral techniques to a different class of regular programs

Front end for ADTs which plugs into the polyhedral model

Mon. 2 May 2022 PhD Defense 39/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Conclusion & Contributions List

Are Algebraic Data Types Regular Enough?

Yes, but the layout is important
Parallelization opportunities
Implemented as a small library
Better exploited through automation

How to Compile ADTs reshaping efficiently?

A framework to compile structural transformation
Reuse polyhedral ideas
Partial implementation by Gabriel

Another Model for the Input Language of the Polyhedral Model?

A framework to extend the polyhedral model
Based on a modified operational semantics
Enabling future non-exact extensions

Mon. 2 May 2022 PhD Defense 40/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Conclusion & Contributions List

Are Algebraic Data Types Regular Enough?

Yes, but the layout is important
Parallelization opportunities
Implemented as a small library
Better exploited through automation

How to Compile ADTs reshaping efficiently?

A framework to compile structural transformation
Reuse polyhedral ideas
Partial implementation by Gabriel

Another Model for the Input Language of the Polyhedral Model?

A framework to extend the polyhedral model
Based on a modified operational semantics
Enabling future non-exact extensions

Mon. 2 May 2022 PhD Defense 40/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Conclusion & Contributions List

Are Algebraic Data Types Regular Enough?

Yes, but the layout is important
Parallelization opportunities
Implemented as a small library
Better exploited through automation

How to Compile ADTs reshaping efficiently?

A framework to compile structural transformation
Reuse polyhedral ideas
Partial implementation by Gabriel

Another Model for the Input Language of the Polyhedral Model?

A framework to extend the polyhedral model
Based on a modified operational semantics
Enabling future non-exact extensions

Mon. 2 May 2022 PhD Defense 40/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Future Work

Extend REW:

Add recursion, guards
Add support for functions

Improve the compilation of REW

Generate parallel code
Improve parallel cache
performance

Continue to explore reformulation
of the polyhedral model input
language

Mon. 2 May 2022 PhD Defense 41/42

Introduction Are Algebraic Data Types Regular Enough? How to compile ADTs reshaping efficiently? Conclusion

Thank you for your attention

Questions?

Mon. 2 May 2022 PhD Defense 42/42

	Introduction
	
	
	
	
	

	Are Algebraic Data Types Regular Enough?
	
	
	
	

	How to compile ADTs reshaping efficiently?
	Conclusion

