
Part I

Main Report

1

CHAPTER 1

RESEARCH REPORT

Towards automating proofs in the context of
commutative semi-rings

Iannetta Paul†

†École Normale Supérieure de Lyon

August 26, 2016

Abstract
Rewriting induction (Reddy 1990) is a rather well-known method to automate the proof

of inductive theorems. This report aims at describing some experiments and their results.
Those experiments aimed at extending the power of rewriting induction (firstly, by changing
the expansion scheme and secondly, by allowing variables to be extended in some cases). In
a second part, the possibility to apply rewriting induction to well-ordering commutative semi-
rings is discussed. The results obtained so far look promising enough to encourage further
investigation in the same track.

1 Introduction
In papers [CAT05] and [CAT06], Chiba et al. expose a method to transform programs into other,
more efficient, programs. The basic idea is to check whether a program fits a certain pattern

2

so that an optimisation can be proposed. However, in order to apply such a transformation the
original program should satisfy some properties. For example, a function used in the original
program should be associative or commutative. My first intent was to automatically prove that
those required conditions were satisfied.

Since my goal was to automatize proof I was redirected to a comparative presentation [小外 00]
of rewriting induction [Red90] and inductionless induction [Lan81; Com94]. Because prerequisites
for rewriting induction seemed easier to satisfy I started to investigate on this topic, as of today, I
do not consider inductionless induction as a priority anymore.

As I investigated rewriting induction, I looked for already known extensions, in particular, I
based my work on this reformulation by Aoto [Tak08] and implemented my own engine to perform
rewriting induction. After some failed experiments to prove automatically the associativity of the
multiplication function without some clever but counter intuitive lemma, I tried to prove some
arithmetic properties on numbers. Which leads me, belatedly, to investigate whether the model
used for automated proofs could not be extended to commutative semi-rings.

This paper is organized in the following way. The first part presents term rewriting, therefore
you can safely skip this section if you are already familiar with the terminology and definitions.
The second part presents rewriting induction, how it works and my contribution to it as well as a
description of the tool I developed to automatically handle rewriting induction. The last sections
deals with proving properties in commutative semi-rings.

2 Preliminaries
Thorough all this section, the sets F and V will be supposed to be disjoint. According to their
names, F is supposed to contain function symbols, whereas V contains countably many variable
symbols.

2. 1 Term rewriting
This subsection contains basic definition about term rewriting. Its only purpose is to serve as a
reference where all concepts used in this report are defined.

In order to show the usefulness of the following definitions. This part gradually presents the
formal definition of the theorem that states the associativity of the plus operator. In order to do
so, the notion of number and mathematical expression should be formalized.

Definition 1 (Arity) Each function f ∈ F can formally take arguments. The number of ar-
guments a function symbol can handle is called arity. As a matter of convenience, the function
ar : F 7→ N which maps each function symbols to its arity will be used.

Remark 1
Conveniently, Fk will denote the subset of F whose elements are of arity k. Specifically, elements
in F0 are called constants.

Definition 2 (Signature) The tuple (F , ar) is called signature and will be referred by F alone
when there is no ambiguity. As a commodity, Fk refers to the subset of F containing the function
of arity k.

3

As of now, the plus operator as well as the two operators in charge of describing Peano numbers
can be defined.

Example 1 Arithmetical operators
The following signature describes a basic framework to handle the addition of number. (The arity
of operators is indicated in the exponent.)

A = {00, s1, +2}

Definition 3 (Terms) The notion of term, which standardize the notion of expression, is defined
with the following recursive definition. The set of terms T (F , V) is the least closed set under the
following rules:

i) constants are terms ;

ii) variables are terms ;

iii) ∀k ∈ N∗, f ∈ Fk, (ti)1≤i≤k ∈ T (F , V), f(t1, . . . , tk) is a term.

Remark 2
Due to their recursive definition terms can be viewed as tree. Therefore, the vocabulary of tree
may be used to describe terms

Remark 3
The set of terms on A is exactly the set of arithmetical expressions with natural numbers and the
plus operator.

From now on, let us introduce some definitions to handle terms.
Definition 4 (Position) Let t = f(t1, · · · , tn) a term. t is denoted by t|ϵ and ti by t|i. Conse-
quently, inner positions can be defined as (when it does make sense) t|i.j = (t|i)|j where i.j means
i concatenated to j.

Definition 5 (Ground term) A ground term is a term with no variables. The set of ground
terms is denoted by T (F).

Definition 6 (Substitution) A substitution σ is a partial function from variables to terms. By
abuse of notation, the homomorphically extended substitution σ̂ from terms to terms will be also
called substitution on denoted σ.

Definition 7 (Domain of substitution) The domain Dom(σ) of substitution σ is the set
{x ∈ V | xσ ̸= x}.

Remark 4
The application of a substitution σ to a term t, σ(t) will be expressed with postfix notation tσ.

4

Definition 8 (Context) A context is a term with a hole. This hole might be later filled by
another term. Formally, the hole (□) is added to the set of variables. Moreover, the special
variable “hole” (□) should appear exactly once. Context are usually denoted by C, a context in
which the hole has been replace by the term t is denoted C[t].

Example 2
Consider the following context C ≡ □+ s(0), then C[0] ≡ 0 + s(0)

Definition 9 (Term Rewriting System) A Term Rewriting System on the set of terms is a set
of term tuples (ℓ, r) called rewrite rule. Each term rewriting R system induces a rewriting relation
→R made of the tuples (C[ℓσ], C[rσ]) where (l, r) ∈ R, C is a context, and σ is a substitution over
the set of terms with respect to R.

Example 3
The following term rewriting (Add) system over A encodes the definition of addition.

(Add) :
{

0 + y −→Add y
s(x) + y −→Add s(x + y)

Definition 10 (Normal form) Let R be a rewrite system and →R be the rewrite relation it
induces. A term s is said to be in normal form if with respect to →R there does not exists some
t such that s →R t.

Definition 11 (Weak Normalization) A term rewriting system is weakly normalizing if all
term have at least one normal form.

Definition 12 (Termination) A term rewriting system is normalizing if all rewriting sequences
can eventually reach a term in normal form.

Definition 13 (Defined symbols and Constructor symbols) Given a term rewriting system
R, the set of defined symbols is the set of function symbols that appears as root symbol in the
first element of the tuples in R; all other symbols are constructor symbols.

Remark 5
Terms made up only of defined symbols are called defined terms and terms made up only of
constructor symbols are called constructor terms.

Example 4
The defined symbols of Add is + and its constructor symbols are s and 0.

Definition 14 (Basic terms) A basic term is a term whose root symbols is a defined symbol
and whose sub-terms are all constructor terms. The set of all basic terms is referred to as B. The
set of all basic subterms of a term s is denoted as B(s).

5

Definition 15 (Sufficiently complete) A term rewriting system is said to be sufficiently com-
plete if all ground basic term can be reduced to ground constructor terms.

Considering to terms t, and s, unification is the process of finding a substitution σ such that
tσ = sσ.

Definition 16 (Unifiers) Let {si ≈ ti}i be a set of equalities. The set U of unifiers is the set of
substitutions σ such that ∀i, siσ ≈ tiσ.

Definition 17 (Most General Unifier) Let U be the set of unifier with respect to some set
of equalities S. A substitution σ ∈ U is said to be more general that σ′ ∈ U if there exists a
substitution τ (which may not be an unifier) such that σ′ = τσ. The most general unifier will be
noted as mgu(S).

2. 2 The CafeOBJ rewriting engine
CafeOBJ is an algebraic programming language based on order-sorted equational logic, more pre-
cisely it uses term rewriting as its foundation. This language is mainly designed to formalize the
specifications of software systems. Then, it is possible to use the rewriting properties of CafeOBJ
to prove that the software meets its specification.

In the following parts only the rewrite engine of CafeOBJ will be used. This rewrite engine
tries to apply in a non-deterministic way rewrite rules on the goal we want to prove. The reason
it is used here is that it is possible to assign precedence to infix symbols which is handful when
dealing with arithmetic statements.

Example 5 Proof of Vajda’s equality
The following proof score is the proof score describing that Vajda’s equality can be proven by
rewriting once the induction hypotheses are correctly found. At first, this example is just to
present what CafeOBJ looks like, but, in a second reading, it is also the proof that certify that if
rewriting can find the two induction hypothesis then the proof can be completed.

mod! M {
[A B Bl] .
op _+_ : B B -> B {assoc comm} .
op _*_ : B B -> B {assoc} .
op s : A -> A .
op 0 : -> A .
op f : A -> B .
ops 2n 3n : -> A .

op tr : -> Bl .
op _===_ : B B -> Bl .

vars X Y Z : B .

eq (X + Y) * Z = (X * Z) + (Y * Z) .
eq X * (Y + Z) = (X * Y) + (X * Z) .
eq f(s(s(N:A))) = f(s(N)) + f(N) .

6

eq (X:B === X:B) = tr .
}

open M .
op l : -> B .
eq l = (f(s(s(s(3n)))) * f(s(s(s(2n))))) + (f(3n) * f(s(2n)))
+ (f(s(s(s(s(s(s(s(3n)))))))) * f(s(s(s(s(2n)))))) .
op r : -> B .
eq r = (f(s(s(s(s(3n))))) * f(s(s(2n))))
+ (f(s(3n)) * f(2n)) + (f(s(s(s(s(s(s(3n))))))) * f(s(s(s(s(s(2n))))))) .
red (l === r) .
close .

Note: The linebreaks between eq and . should not be present in the section between open M and
close .

The first part (the lines starting with op) declares the signature (the operators, their arity and their
properties); the second part describe the term rewriting system used (here are used the Fibonacci
recursive definition, the distributivity rules and the standard equality); the last between open M
and close is the proof score. First l and r are declared, those ‘variables’ refer respectively to the
left and right hand-side obtained after applying the induction hypothesis in the proof of Vajda’s
equality.

3 Inductive theorem proving

3. 1 Presentation
Let us come back to the associativity of the plus operator. It is expressed as follows (variables are
implicitly universally quantified):

(x + y) + z = x + (y + z)

In order to state the correctness of this statement, it is natural to harness the inductive definition
of natural numbers (ie. a number is either zero or the successor of another number)

Therefore, basically, two proof schemes are at our disposal: case analysis and induction. For
that very reason, it would be great if those two schemes could be automated to some extent and
that is what rewriting induction [Red90] provides. Due to the nature of this scheme it can only
handle inductive theorems and does not exactly perform case analysis even if in some cases the
proof log might look alike to traditional case analysis.

Definition 18 (Inductive theorems) A property P (t1, . . . , tn) on terms is an inductive theorem if
P (t1σ, . . . , tnσ) holds for all ground substitutions wherein all variables in t1, . . . , tn are instantiated
to ground terms.

The associative property of plus as stated above is an inductive theorems as it can be prove
separately on each kind of ground terms. Here, there are two such kinds: zero and numbers different
from zero.

7

3. 2 Rewriting induction
Rewriting induction, first exposed by Reddy in 1990, is a proof technique used to handle induc-
tion theorems automatically. It offers a new approach, less cumbersome than structural induction
because it does not require meta-variables; furthermore there is no need to take quantifiers into
account since they are implicit and have no role in the algorithm.

Its dark side is that it still cannot compete against the power of structural induction as it will
be shown later. The variant presented here follows [Tak08], in the aforementioned Aoto presents as
well an extension to deal with non-orientable equalities (which will not be used in the following).

Informally, the idea behind rewriting induction is to start with to set of equations: one containing
the theorems to be proved, the other containing hypothesis that can be used to complete the proof.
Once all equalities have been cleared the hypothesis are proved.

Let us now present it in full details.
First, since rewriting induction needs an order on terms, let’s introduce the following order,

lexicographic path order:

Definition 19 (Lexicographic path order) Let Σ be a signature and ≻ an order on Σ. The
lexicographic path order ≻lpo on T (F , V) induced by s ≻lpo t is defined as follows:

LPO 1 : t is a variable in s and t ̸= s, or

LPO 2 : s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

LPO 2a : ∃i, 1 ≤ i ≤ m with si ≻lpo t, or

LPO 2b : f ≻ g and s ≻lpo tj , ∀j, 1 ≤ j ≤ n, or

LPO 2c : f = g, s ≻lpo tj , ∀j, 1 ≤ j ≤ n and (s1, . . . , sm) ≻lex
lpo (t1, . . . , tn).

Definition 20 (Equality with respect to a term rewriting system) Let R be a term rewriting
system and →R the relation induced by R. Two terms s and t are equal (denoted s ≈ t) with
respect to R if and only if, for all substitutions σ, sσ ↔∗

R rσ where ↔∗
R denotes the reflexive

symmetric transitive closure of →R.

The inference rules describing rewriting induction can be found in Figure 1.1. Those rules are
to be read from bottom to top, the bottom is transformed in the form exposed above the bar. The
rules simplify and delete removes superfluous equalities while the expand rule is the keystone of
this scheme. (E, H)⇝α (E′, H ′) means that rule α transforms (E, H) to (E′, H ′).

Theorem 1 (Rewriting induction) For a sufficiently complete and terminating TRS R, if
⟨{s = t}, ∅⟩ ⇝∗

e,s,d ⟨∅, H⟩ then R ⊢ s = t.

3. 3 Strengths and weaknesses
The main strength of this approach is that since variables are implicitly (universally) quantified,
there is no need to jungle with quantifiers applying the rules. Another point worth noting is that
the inference rules remain quite basic, in the sense that implementing them in a functional language
is not so much of a daunting task.

8

Expand:
⟨E ∪ Expdu(s, t), H ∪ {s → t}⟩

⟨E ∪ {s = t}, H⟩
, s|u ∈ B, s > t

Simplify:
⟨E ∪ {s′ = t}, H⟩
⟨E ∪ {s = t}, H⟩

, s →R∪H s′

Delete:
⟨E, H⟩

⟨E ∪ {s = s}, H⟩

Expdu(s, t) = {C[r]σ = tσ | s ≡ C[s|u], σ = mgu(s|u, l), l → r ∈ R}

Figure 1.1: Rewriting induction inductive rules

Example 6 Proof of associativity of plus
In order to prove that the inductive theorem about the associativity of the plus operator holds
in the rewriting system Add, let’s input the equality relative to associativity into the rewriting
induction framework and see how it unravels on that theorem.

⟨{x + (y + z) = (x + y) + z}, ∅⟩
⇝e⟨{x + (y + 0) = (x + y); x + (y + s(z′)) = s((x + y) + z)},

{x + (y + z) → (x + y) + z}⟩
⇝∗

s⟨{x + y = (x + y); x + s(y + z′) = s((x + y) + z′)},

{x + (y + z) → (x + y) + z}⟩
⇝∗

s⟨{x + y = (x + y); s(x + (y + z′)) = s((x + y) + z′)},

{x + (y + z) → (x + y) + z}⟩
⇝∗

d⟨∅, {x + (y + z) → (x + y) + z}⟩

By the means of the expand rules an induction hypothesis is generated, then using this hypothesis
as well as the rules of the rewriting system Add the equalities set can be reduced to the empty
set. Therefore, the theorem about the associativity of the plus operator holds.

But this apparent simplicity in design brings in weaknesses as well. The main weakness is the
very strong dependency on the rewriting system used. This dependency will often cause the expand
rule to create unusable hypothesis. Moreover it will often cause the system to diverge.

This weakness is clearly illustrated in an attempt to prove the associativity of the max operator.
Example 7 Fail in the proof of the associativity of max
The rewriting system for the max operator is as follows:

(Max) :

 max(0, y) −→Max y
max(x, 0) −→Max x
max(s(x), s(y)) −→Max s(max(x, y))

9

The theorem stating the associativity of the max operator is as follows:

max(max(x, y), y) = max(x, max(y, z))

Let’s apply rewriting induction:

⟨{max(max(x, y), z) = max(x, max(y, z))}, ∅⟩
⇝e⟨{max(max(0, y), z)) = max(0, z), max(max(x, 0), z)) = max(0, z)

max(max(s(x), s(y)), z) = max(s(x), max(s(y), z))},

{max(max(x, y), y) → max(x, max(y, z))}⟩
⇝∗

s,d⟨{max(s(max(x, y)), z) = max(s(x), max(s(y), z))},

max(max(x, y), y) → max(x, max(y, z))}⟩

It is still possible to expand here but it is just the beginning of an infinite loop.
In that case, it is possible to prove this theorem by structural induction. Moreover, it is possible
to extend rewriting induction to handle this case, but even if it should work theoretically it is not
suited for automation.

In this case, the system winds up in an infinite loop because it fails to expand the right part.
More precisely, since the expansion is not deterministic it may not take the good path. Another
point to consider is that rewriting induction will never try to expand variables since they are not
considered as basic terms.

3. 4 Expansion scheme revisited
In this subsection, two tracks to extend rewriting induction will be explored: the first one is a
new approach in the expansion process; the second explores what can be done if variables become
expandable.

The first extension to be discussed is parallel extensions, instead of expending at one position
at a time all expendable position are expanded. If the previous approach was to be compared with
a tree traversal it would be a depth-first search, with this new approach it becomes a breadth-first
search. The idea behind this variation is that it can prevent the expansion process to run blindly
into an infinite loop (like in the case of the proof of the associativity of max.

Theorem 2 (Parralel Expansion) Parallel expansion is equivalent to normal extensions.

Sadly, it is still not enough to proof the associativity of the max operator. So as to do that, here
comes the second extension: variable extension. The idea here is to remove the condition that the
term s should be basic in the expansion rule and to allow variables as well. The striking problem
of this approach is that the number of positions can be performed increases dramatically. Thus, in
practice, variables are expanded if and only the expand rules can be applied nowhere else.

Theoretically, this extension solves the proof of the max operator. (It suffices to expand the z
variable. Nevertheless, in practice, since there is always a basic term to expand, this extension is
never triggered and the proof that max is associative fails again.

10

Theorem 3 (Variable expansion) Variable expansion preserves equality with respect to the
base term rewriting system.

Example 8 Associativity of max revisited
Let’s assume that variables can be expanded. Then, continuing from the last state in the previous
example:

⟨{max(s(max(x, y)), z) = max(s(x), max(s(y), z))},

{max(max(x, y), y) → max(x, max(y, z))}⟩
⇝e⟨{max(s(max(x, y)), max(0, y1) = max(s(x), max(s(y), 0)),

max(s(max(x, y)), max(x1, 0) = max(s(x), max(s(y), 0)),
max(s(max(x, y)), max(s(x1), s(x2)) = max(s(x), max(s(y), s(max(x1, y1)),
{max(max(x, y), y) → max(x, max(y, z))}⟩

⇝∗
d,s⟨∅, {max(max(x, y), y) → max(x, max(y, z))}

In that case, it is possible to conclude the validity of the associativity of the max operator.

3. 5 Automation of Rewriting Induction
In order to ease experiments and to take full advantage of the fact that rewriting induction is to
be automatized, a program in haskell has been written. This program allows to perform rewriting
induction and implements some of the extension presented in this report. More precisely, the
program can apply the expand rule in parallel (variables expansion is not explicitly supported), it
is also possible to give a set of goals to prove and to give a partial order so as to help the program
to choose which goals should be proven first. The order used to compare terms is the lexicographic
path order. This order has been chosen for its simplicity (implementation-wise).

More details about the implementation can be found in the section 1

4 Proving properties in well ordered semi rings
In this section, well-ordered semi-rings as well as how to harness their properties to improve rewriting
induction in this particular setting will be discussed.

4. 1 A special case of Vajda’s equality
The theorem at hand is extracted from standard arithmetic and is more precisely about Fibonacci
numbers. The theorem known as Vajda’s equality is as follow:

∀(i, j, n) ∈ N3, Fn+iFn+j − FnFn+i+j = (−1)nFiFj

Nevertheless, in order to simplify the problem, the variables i, j and n are respectively set to m, 1
and 2m where m is an integer. This leads to the following theorem:

∀n ∈ N, P (n)

11

where
P (n) : F3nF2n+1 − F2nF3n+1 = Fn

In this section, the state of the research will be exposed. The result are still not complete.
Assuming that P (n) and P (n+1) are valid for a specific n, a traditional second order induction

would yield the following induction hypothesis:

P (n) : F3nF2n+1 − F2nF3n+1 = Fn

P (n + 1) : F3n+3F2n+3 − F2n+2F3n+4 = Fn+1

Again, according to the traditional inductive scheme,

P (n + 2) : F3n+6F2n+5 − F2n+4F3n+7 = Fn+2

is to be proved.
Since the final objective is to automatize it using only natural numbers, the terms in the above

equations should be rearranged so that the minus sign is no longer used. Furthermore, Fn+2 should
be expanded with respect to the definition and the induction hypothesis should be applied. Which
leads to,

F3n+6F2n+5 + F2n+2F3n+4 + F2nF3n+1 = F2n+4F3n+7 + F3nF2n+1 + F3n+3F2n+3

Here, the properties coming from the well-ordered semi-ring structure come in handy. Let’s
consider the multiple of n (2n and 3n as special not expandable constant terms like 0). From there
on, by using commutativity, associativity and the fact term can terms can internally be sorted,
deciding equality becomes as easy as deciding the equality of two ordered sets.

Nevertheless, as of now, the rewriting induction framework does not support second order in-
duction (this point will be further discussed in the Extension section). Thus, the process is still not
fully automated. To make things worse, rearranging terms according in the equalities so as to get
rid of minus symbols create rewrite rules that are difficult to use.

4. 2 Associativity and commutativity
As seen above, associativity and commutativity are the keystones behind the success of the previous
attempt. (Even though, the attempt is still not completely automatized it still looks promising).
Furthermore, those properties weight even more than the real definition of the plus and times
operator used in the proof of Vajda’s equality.

Theorem 4 () In a well ordered semi-ring checking equality is the same as checking the equality
of two ordered sets.

4. 3 Orderering the ring elements
Since the ring has to be well-ordered it has to be equipped with a well-founded order. The order
chosen is of little importance since it does not matter even it is choosen randomly. But performance-
wise the choice does matter, in particular, the more trival it is to decide whether an element is greater
than another the better.

12

In the case of the proof of the Vajda’s equality, the only kind of terms appearing are products
of two Fibonnaci numbers, therefore, ordering them with Lexicographic order make sense. More
precisely, a product FnFm is seen as a tuple (n, m) and since the productthe case of the proof
of the Vajda’s equality, the only kind of terms appearing are products of two Fibonnaci numbers,
therefore, ordering them with Lexicographic order make sense. More precisely, a product FnFm is
seen as a tuple (n, m) and since the product is commutative n is always chosen so that it is greater
or equal to m.

5 Extension
This section describes future works and what could be done to improve the work described in this
report.

5. 1 Handling second order induction
Theoretically speaking, handling second order induction is as simple as handling traditional induc-
tion. Indeed, to reduce second order induction to first order induction it suffices to consider the
property Q(n) : P (n) ∧ P (n + 1).

Nonetheless, since rewriting induction is extremely dependent on the form of rewriting rules, it
might prove more difficult to automate in a satisfying way.

5. 2 Working with equalities
As long as commutativity holds it is possible to handle equalities as expressions that could be
handled as terms. Commutativity is important because it does not matter whether there are minus
signs appearing in the left or right side of equalities since they can be swapped to the other side
easily.

5. 3 Get rid of commutativity
As of now, commutativity is central to achieve proof in the semi-ring settings, allowing us to move
around terms quite freely. Nevertheless, this is a strong assumption and it would be great if it could
be removed. That being said, it does not seem obvious at all to get rid of it and moreover it may
require a whole different approach.

6 Conclusion
This paper proposed some extensions to rewriting induction, parallel expansions and variable ex-
pansions. Those extension increases slightly the power of rewriting induction by limiting the risk
that the extension path proves to be infinite.

On the other hand, this paper discussed the possibility to apply rewriting induction to well-
ordered semi-rings through the example of a special case of Vajda’s identity. Nevertheless, the work
is still mostly in progress because even if it has been certified by CafeOBJ that the proof can be
automated, it has not been proven in the strict setting of rewriting induction.

13

7 Acknowledgements
I want to thank warmly my supervisors at JAIST (Dr. Hirokawa Nao and Dr. Chiba Yuki) for
their valuable advice all along my research period. I also want to thank the other member of my
research team, Jungo Shibuya, Netrakom Park and Watanabe Ryouko who all contributed to the
very positive atmosphere of our laboratory. Last but not least, I want to thank the Rhône-Alpes
region (now Auvergne-Rhône-Alpes) and the École Normale Supérieure de Lyon for their grant that
allowed me to spend a year studying in Japan.

14

BIBLIOGRAPHY

[ALM15] Martin Avanzini, Ugo Dal Lago, and Georg Moser. “Analysing the complexity of func-
tional programs: higher-order meets first-order”. In: Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2015, Vancouver,
BC, Canada, September 1-3, 2015. 2015, pp. 152–164. doi: 10.1145/2784731.2784753.
url: http://doi.acm.org/10.1145/2784731.2784753.

[CAT05] Yuki Chiba, Takahito Aoto, and Yoshihito Toyama. “Program transformation by tem-
plates based on term rewriting”. In: Proceedings of the 7th ACM-SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP 2005). ACM
Press, 2005, pp. 59–69.

[CAT06] Yuki Chiba, Takahito Aoto, and Yoshihito Toyama. “Program transformation by tem-
plates: A rewriting framework”. In: IPSJ Transactions on Programming 47.SIG 16 (PRO
31) (2006), pp. 52–65.

[Com94] Hubert Comon. Inductionless Induction. 1994.
[HMZ13] Nao Hirokawa, Aart Middeldorp, and Harald Zankl. “Uncurrying for Termination and

Complexity”. In: J. Autom. Reasoning 50.3 (2013), pp. 279–315. url: http://dx.doi.
org/10.1007/s10817-012-9248-3.

[Lan81] D.S. Lankford. A simple explanation of inductionless induction. Tech. rep. Mathematics
Department, Louisiana Tech. Univ., 1981.

[Red90] Term Rewriting Induction. 1990.
[Sch98] Renate A. Schmidt. “E-Unification for Subsystems of S4”. In: Rewriting Techniques

and Applications, 9th International Conference, RTA-98, Tsukuba, Japan, March 30 -
April 1, 1998, Proceedings. 1998, pp. 106–120. doi: 10.1007/BFb0052364. url: http:
//dx.doi.org/10.1007/BFb0052364.

[Tak08] Aoto Takahito. Dealing with Non-orientable Equations in Rewriting. 2008.
[小外 00] 小池広高 and 外山芳人. 潜在帰納法と書き換え帰納法の比較. 2000.

15

http://dx.doi.org/10.1145/2784731.2784753
http://doi.acm.org/10.1145/2784731.2784753
http://dx.doi.org/10.1007/s10817-012-9248-3
http://dx.doi.org/10.1007/s10817-012-9248-3
http://dx.doi.org/10.1007/BFb0052364
http://dx.doi.org/10.1007/BFb0052364
http://dx.doi.org/10.1007/BFb0052364

CHAPTER 2

RESEARCH ACTIVITIES

This chapter will briefly describes the activities I was involved in this year. In particular, I had
the opportunity to join a weekly seminar organized by my research laboratory. The theme revolve
mainly around term rewriting and I was a speaker roughly once a month from February 2016.
Each seminar I joined is briefly presented and I mention the one where I was a speaker. Those
seminars were often used to discuss our research progress and where held in a pedagogic purpose.
In particular, Dr. Hirokawa’s talks mainly aimed at presenting topics (related with term rewriting)
that were unknown or still not really understood by the other students of our research laboratory.

Here follows the list of those seminars.

Jan 26 (Kento Yamazaki): Stringification for Termination Analysis .

Feb 9 (Paul Iannetta) Inductive Theorem Proving Based on Rewriting : This was my
first talk as a speaker. I introduced to my research group a comparison between rewriting induction
and inductionless induction based on the paper [小外 00]. I also justified why I choose to work
on rewriting induction rather than induction-less induction: the main reason being that rewriting
induction does not require confluence.

Feb 16 (Nao Hirokawa) Knuth-Bendix Order Dr. Hirokawa presented us the Knuth-Bendix
order and some its applications. The purpose of this talk was mainly educational, I mean that, at
the end of the talk we should be able to understand how Knuth-Bendix order works so that we can
use it in our research projects if needs be.

March 22 (Park Netrakom) Associative unification In this talk Mr. Netrakom presented
the concept of unification modulo associativity. That is, the associativity of operators is taken into
account when trying to find an unifier.

16

March 29 (The Curry-Howard Isomorphism) I presented to my group the Curry-Howard
Isomorphism. In this talk I tried to do a parallelism between types in functional programming
language and first-order logic.

Apr 12 (Nao Hirokawa) Uncurrying for termination In this talk, Dr. Hirokawa presents
applicative term rewriting systems, how those system can be uncurried and then how to prove that
they terminate. This talk is based on the following two papers [HMZ13; ALM15].

Apr 26 (Park Netrakom) Correctness of Unification In this talk Mr. Netrakom presented
us the unification algorithm and justified its correctness. This talk was lecture-like and its purpose
was to be an exercise so that the speaker had to impersonate a lecturer.

Apr 26 (Paul Iannetta) Rewriting induction in real-life In this talk, I present rewriting
induction in more details and highlighted the fact that the success of rewriting induction relies
heavily on the input term rewriting system.

May 10 (Jungo Shibuya) Product Construction and Subset Construction Mr. Shibuya
presented in a lecture-like talk (as Mr. Netrakom did two weeks before) how to construct the
cartesian product of two automata and how to transform a non deterministic automaton to a
deterministic automaton. He also explained why the constructed automata were correct.

May 10 (Ryouko Watanabe) Proving Normalization by Persistency Decomposition
Ms. Watanabe presented the concept of persitency decomposition (which is roughly decompose the
rules of a term rewriting system according to the type of the function they encode) and how this
decomposition can be used to prove normalization.

May 19 (Nao Hirokawa) Abstract Completion

May 26 (Paul Iannetta) On Local Confluence and Critical Pairs I exposed in a lecture-like
talk the relation between critical pairs, local confluence as well as the Newmann’s lemma.

Jun 2 (Ryouko Watanabe) From Outermost Termination to Innermost Termination
In this talk, Ms. Watanabe exposed an algorithm to transform an outermost terminating term
rewriting system into an innermost terminating rewriting system. The main theorem of the talk
was that if the newly created term rewriting system is innermost most terminating then the original
term rewriting system is outermost terminating.

Jun 9 (Nao Hirokawa) Programming Turing Machines Dr. Hirokawa presented Turing
machines for a term rewriting point of view.

Jun 16 (Jungo Shibuya) CKY algorithm Mr. Shibuya presented the CKY algorithm which
is used to test whether a word is recognized by a context free grammar.

Jun 16 (Park Netrakom) A1-Unification Algorithm This talk was mainly based on [Sch98].

17

Jun 22 (Ryouko Watanabe and Paul Iannetta) This seminar was a collaboration with
another research group Ms. Watanabe and Mr. Iannetta presented their respective works and the
progress they made from their previous talk (see Jun 2 and May 26).

Jun 30 (Jungo Shibuya) Linear Sentences

Jul 7 (Ryouko Watanabe) Automated Normalization Analysis for Term Rewriting In
this talk, Ms. Watanabe presents Nort, her automated tools to prove normalization. She also
explained the different methods used by her tool.

Jul 14 (Nao Hirokawa) Confluence of monadic string rewriting system This talk address
the following problem solved by Otto (JCSS 1987): given a monadic string rewriting system R and
a string w, is R confluent on the R-equivalent class of w.

Jul 21 (Paul Iannetta) In this talk, I presented my last progresses and the application of
rewriting induction to well-ordered semi-rings.

Jul 28 (Park Netrakom) Freezing Mr. Netrakom presented how to freeze rewrite rules. This
freezing technique is used to improve the efficiency of tools use to automatically decide termination.
It is based on [HMZ13].

18

Contents

I Main Report 1

1 Research report 2
1 Introduction . 2
2 Preliminaries . 3

2. 1 Term rewriting . 3
2. 2 The CafeOBJ rewriting engine . 6

3 Inductive theorem proving . 7
3. 1 Presentation . 7
3. 2 Rewriting induction . 8
3. 3 Strengths and weaknesses . 8
3. 4 Expansion scheme revisited . 10
3. 5 Automation of Rewriting Induction . 11

4 Proving properties in well ordered semi rings . 11
4. 1 A special case of Vajda’s equality . 11
4. 2 Associativity and commutativity . 12
4. 3 Orderering the ring elements . 12

5 Extension . 13
5. 1 Handling second order induction . 13
5. 2 Working with equalities . 13
5. 3 Get rid of commutativity . 13

6 Conclusion . 13
7 Acknowledgements . 14

2 Research activities 16

II Appendixes 20
1 Implementation details . 21
2 More details on the syntax . 21

19

Part II

Appendixes

20

1 Implementation details
The program mentioned in the section 3. 5 will be explained with more details in this section.

The source code is divided into four parts: a front-end (lexer and parser), a part for handling
operations on terms, a part that handle rewriting induction and a part that processes the dependence
graph to handle multi-goals proofs.

Language choice: The Haskell language has been chosen because the functional paradigm
shares a lot with term rewriting. That said I could have chosen OCaml which is a more familiar
language to me, but I chose Haskell for two reasons: it was the occasion to learn a new language
and the Parsec library is embedded directly in the language whereas tools like OCamllex or
Menhir are external tools.

What is actually implemented The program features simple rewriting induction with parallel
extension as well as basic term rewriting. The term rewriting part can handle most standard
operations on terms and can reduce them with respect to a term rewriting system. For that
purpose, standard unification has been implemented as well. Nevertheless all the features are not
accessible or meant to be accessible to the user, at least as of now.

As of now, the program can either prove a property or fail its proof but it cannot disprove a
property.

Example Here is an example describing quickly how to use the program.
Example 9 Associativity of the plus operator def plus : Nat Nat -> Nat .

var X : Nat .
var Y : Nat .

ax plus(z, Y) = Y .
ax plus(s(X), Y) = s(plus(X, Y)) .

goals plus(X, plus(Y, Z)) = plus(plus(X, Y), Z) .
The syntax is as follows, def introduces the type of element in the signature (of the subsequent
term rewriting system); ax introduces the rewriting system and goals introduces a series of
theorem to be proved with respect to the rewriting system.
Once this file is submitted to the program it will try to find an order on terms, if an order can
be found the rules given will be oriented with respect to this order and a rewriting system will be
derived; from there on rewriting induction will be applied to the goals.
In this case the program successfully complete the proof as expected.

2 More details on the syntax
The syntax of the language used is extremely regular: every command starts by the name of the
command to be invoked and ends by a period.

21

Variables

Variables’ name are in uppercase.

Terms

Terms are constructed with the following grammar:
<term> := <identifiers> (<arglist>) <arglist> := (<term> | <varname>) <arglist´> <ar-

glist´> := e | ; <arglist>

Sort

Sorts are of the following form:

1. Basic sort name (Basic sort name should be all lowercase save for the first which has to be in
uppercase) ;

2. → Basic sort name (represent a function with no parameters whose return type is Basic sort
name) ;

3. ⟨sort⟩ → ⟨sort⟩

The command def

Syntax: def ⟨identifier⟩ : ⟨sort⟩ .
Syntax: def ⟨varname⟩ : ⟨sort⟩ .

Identifiers have to be in lowercase. Sort names are defined on the fly and does not mean much
on their own but they are important for asserting type constraints that are later to be checked
during type verification.

The command ax

Syntax: ax ⟨term⟩ : ⟨term⟩ .
This command introduces the underlying rewriting system in which all the proofs are to be

done.

The command goals
Syntax goals [⟨goalNb⟩] [⟨goalsNb⟩] ⟨term⟩ = ⟨term⟩ (; ⟨term⟩ = ⟨term⟩ (; ...)) .

If goals are assigned numbers then they can be later referred in later goals as dependencies. The
goals are then processed in topological order.

22

	I Main Report
	Research report
	Introduction
	Preliminaries
	Term rewriting
	The CafeOBJ rewriting engine

	Inductive theorem proving
	Presentation
	Rewriting induction
	Strengths and weaknesses
	Expansion scheme revisited
	Automation of Rewriting Induction

	Proving properties in well ordered semi rings
	A special case of Vajda's equality
	Associativity and commutativity
	Orderering the ring elements

	Extension
	Handling second order induction
	Working with equalities
	Get rid of commutativity

	Conclusion
	Acknowledgements

	Research activities

	II Appendixes
	Implementation details
	More details on the syntax

