Semantic Polyhedral Model for Arrays and Lists

Paul Iannetta
Supervisors: Laure Gonnord and Lionel Morel

June 1st, 2018

Abstract

The polyhedral model is a powerful reasonning
framework that permits to optimize intensive com-
putation kernels (piece of imperative code). However
in this report we propose to define a “Semantic Poly-
hedral Model”, a formalisation of the main concepts
on which the polyhedral model is built, from the no-
tion of operation to data dependencies. This formulation,
which is no longer based on syntactic computations
but rather on semantic definitions, enables us to char-
acterize the domain on which the polyhedral domain
optimisations will apply. We also propose some ex-
tensions on programs with lists and memory sharing.

Contents

1 Introduction

11 Context
1.2 The polyhedral model framework
1.3 Limits of the polyhedral model, motiva-

tions of this internship
Overview

1.4

2 Presentation of [Fea91]: contribution and limits

2.1 Hypotheses and Restrictions
22 Notations
2.2.1 Operations and Statements

2.2.2 Tracking operations
Computation of dependencies
Toward a more semantic polyhedral model

23
24

3 General imperative programs with iteration vec-
tors
31 Aminilanguage.
3.1.1 Informal semantics
3.1.2 Semantic extension: iteration vari-
ables and iteration vectors for our
language

NN

Résumé

Le modele polyédrique est un modele puissant qui permet
d’optimiser des noyaux de calculs intensifs (des bouts de code
impératif). Cependant, dans ce rapport on se propose de définir
un « Modele Polyedrique Sémantique » qui se veut une formali-
sation des concepts présent dans le modele original en repartant
de la notion d’opération jusqu’au concept de dépendance en don-
nées. Cette reformulation qui repose non plus sur des concepts
syntaxiques mais sémantiques permet alors de caractériser le
spectre d’application du modéle polyédrique. Nous proposons
aussi des extensions pour des programmes utilisant des listes et
qui font du partage mémoire.

3.1.3 Annotation of a general program . . 7

3.2 Execution Environment, final semantics of

our mini-language 8

321 MemoryModel 8

322 States 8

323 Semantic................ 9

33 Traces 10

4 Dependencies for general programs 11

4.1 Different types of dependencies 11

42 Equivalence with [Fea91] 11

5 Extensions 12
51 “Covertly regular” loops with scalar and

arrays o 13

5.2 General (affine or non affine) loops 13

53 Lists., 13

54 On giving numbers to listcells 13

5.5 Ondealing with aliasing 14

6 Conclusion 14

A An implementation in Prolog 14

A.1l Details About the Memory Model 14

A2 Practical Implementation in Prolog 14

A.3 Dependencies in the Finite Case 15

Paul Iannetta, LIP - 2018 2

1 Introduction

The work presented in this report is the first step of
the CODAS ANR project !, for which we describe the
general context (Section 1.1) and related work in the con-
text of the polyhedral model (Section 1.2). Section 1.3
describes the motivation of this internship and its objec-
tive.

1.1 Context

This section as well as the next one are directly taken from
the ANR proposal itself.

The rise of embedded systems and high performance
computers generated new problems in high-level code
optimization, especially for loops, both for optimizing
embedded applications and for transforming programs
for high-level synthesis (HLS). Moreover, everything in-
volving data storage is of prime importance as it im-
pacts power consumption, performance, and for hard-
ware, chip area. Thus, there is an increasing need for bet-
ter scheduling techniques for all kinds of programs, espe-
cially those manipulating a huge amount of data.

So far, the polyhedral model [FL11], a framework in-
troduced in the late eighties, has been successfully ap-
plied to a range of these compilation problems, such
as (semi-)automatic parallelization and code generation
[Fea92a] or optimization of data movement [DI15]. How-
ever, this powerful model hits its limit as soon as we are
faced with irregular programs (general while loops, un-
predictable conditions). As a consequence, these power-
ful techniques have, for the moment, only seen their use
in limited (but still important) niches, because of these in-
trinsic restrictions.

The long term objective of the CODAS ANR project
is to give a general way to reason about and manipulate
programs with general control flow and complex data
structures. The project proposes to start with the current
state of the polyhedral model, and then to enhance this
framework both theoretically and algorithmically in or-
der to be able to deal with more general programs.

The objective of this internship is to make a first step
toward this ambitious objective.

1.2 The polyhedral model framework

The polyhedral model is a collection of techniques
developed around a common intermediate representa-

nttp://codas.ens-1lyon.fr/

M2 final report

tion of programs: integer polyhedra. Such a represen-
tation of programs inherits nice properties from the un-
derlying mathematical structure. For instance, when loop
transformations are represented as affine functions, com-
positions of transformations are also affine functions due
to closure.

The polyhedral representation was linked to loop
programs in an analysis proposed by Feautrier [Fea91]
that provides exact dependency analysis information
where statement instances’ (i.e., statements executed at
different loop iterations) and array elements are distin-
guished. The exact dependence information obtained
through this analysis together with the use of linear pro-
gramming techniques to explore the space of legal sched-
ules [Fea92b] is what constitutes the basis of the polyhe-
dral model for loop transformations.

J

i

for (i = 0;
for (j =

S: Alj] =

i <N; i++4)
i; j <N; j++)
f(Ali], A[j]);

Domain(S) ={1,j |0 <i<j <N}
Read(S — 2) = (i,j — 1);(1,j — 7))
Write(S — 2) = (i,j — 1)

(i,j — i,1) 1<

Dep(S—S)=¢({,j—1i-1,j) :0<i

corner case

Figure 1: An example of polyhedral representation. Loop
nests that fit the polyhedral model can be viewed as
mathematical (constraint-based) objects, which can also
be visualized geometrically.

Figure 1 illustrates the polyhedral representation
with an example. The statement S is executed approxi-

mately NTZ times during the execution of this loop. The
triangular region expressed as a set of constraints, called
the domain of S, represents this set of dynamic execu-
tion instances. Accesses to array A from each of these
statement instances can be succinctly captured through
affine functions of the loop iterators. The dependencies

2later called operations.

http://codas.ens-lyon.fr/

Paul Iannetta, LIP - 2018 3

are also expressed as a function between two statement
instances. ° The key insight is that although the specific
dependencies at a statement instance may differ, they are
all captured by a function due to the regularity in the con-
trol flow. The figure illustrates dependencies for two in-
stances, where one of the dependencies (i,j — 1i,1) has
different lengths depending on the instance.

The “traditional” use of polyhedral techniques in
optimizing compilers focuses on loop transformations.
PLuTo [BHRS08] is a now widely used push-button tool
for automatically parallelizing polyhedral loop nests.
PLuTo tries to optimize locality in addition to paral-
lelization. There is also significant work in data lay-
out optimization for polyhedral programs where anal-
yses are performed to minimize the memory require-
ment [DSV05]. Polyhedral techniques for loop transfor-
mations are now adopted by many production level com-
pilers, such as GCC, IBM XL, and LLVM.

Recently, polyhedral techniques have been applied
to many different areas beside loop transformations.
One natural application of automatic parallelization tech-
niques is in verification of given parallelizations where
the tools take parallelized programs as inputs, and use
polyhedral analysis to guarantee the absence of parallel
bugs [BYR" 11, YFRS13]. Another application of schedul-
ing techniques is in the synthesis of ranking functions for
proving program termination [ADFG10].

1.3 Limits of the polyhedral model, motiva-
tions of this internship

Although the polyhedral model provides strong
analysis capabilities with many different applications, its
main limitation is its applicability. The program must
have regular control flow, and in addition, it has to be
fully affine. Specifically, loop bounds, array accesses, and
if conditions must be affine functions of the surround-
ing loop iterators and runtime constants. As an example,
FFT (Fast Fourier Transform) has a regular control flow,
but cannot be represented with the polyhedral model be-
cause it is not fully affine.

More precisely, we want to propose a formalization
of the polyhedral model that does not rely on the syn-
tax. The approach should be generic enough so that it
can be applied to programs where loops are not explicit
and where only the control flow graph is available. This
would typically be used for scheduling programs in the
form of LLVM intermediate representations from which

3There are a number of ways to represent dependencies in the poly-
hedral model. Here, we represent them as a function from consumer
instances to producer instances.

M2 final report

we can hope to retrieve a representation with while
loops.

This formalization should provide a generalization
of [Fea91]. It should redefine the concept of depen-
dency in a more general setting while preserving as much
as possible a compatibility with the work presented in
[Fea91]. The formalization should make the definition of
dependencies as natural as possible.

Another goal of this formalization is to make the
points that render the polyhedral decidable explicit. By
doing so, we could pin-point where room is available for
approximations.

1.4 Overview

The report is organized as follows: in Section 2 we
recall the main concepts introduced in the seminal paper
of Paul Feautrier ([Fea91]). Later works in the area are
based on this paper, that is quite self-contained. From
this paper, we make the notion of dependency, which is
a fundamental concept for the rest of our work, explicit.
We explain how it is defined and computed. In Section 3
we introduce the language we want to work on, its syn-
tax and semantics, which is a non trivial extension of the
small-step operational semantics that includes the notion
of iteration vectors to keep track of dates where operations
are computed. This allows the formal definition of depen-
dencies, that is proven to be the same semantic concept
as the one effectively computed by the polyhedral model
framework (Section 4). Finally, in Section 5 we informally
explain the next steps toward an effective computation
of dependencies of general programs with lists. We con-
clude with future work.

2 Presentation of [Fea91]: contribu-
tion and limits

This section presents the results exposed in [Fea91].
Everything presented here is present in the original pa-
per. However for the sake of ease, some definitions have
been reworded and explanations added for more intu-
ition.

The results in [Fea91] address the (automatic) paral-
lelization of for loops. Extracting the full dependency
graph between each operation performed by a general
program is unpredictable and the only way to extract the
dependencies correctly would be to execute the program.
Hence, [Fea91] focuses on the analysis of programs with

Paul Iannetta, LIP - 2018 4

static-control and affine indices where this analysis is de-
cidable.

2.1 Hypotheses and Restrictions

The notion of static control here means that all loops
are for loops whose bounds are affine functions of struc-
ture parameters (that is, a set of integer variables that will
be set once and for all by the means of an input statement
and computations involving previously computed struc-
ture parameters), numerical constants and in-scope loop
counters.

Moreover, the results presented here assume that
for loops have a constant step of one, that there is no
aliasing * and that the program does not try to access il-
legal memory cells. That said, as long as the step of the
loop remains a constant known at compile time, the re-
sults still hold.

2.2 Notations

2.2.1 Operations and Statements

Let us first, clarify the distinction that will be made
between operation and statement. The listing in Figure 2
will help illustrate the difference.

1 res =1 (x sl x)
2 for i from 1 to n:
(» s2 *)

3 res := res x 1

Figure 2: The factorial with a for loop.

In this example there are two statements (on lines 1
and 3) but n+1 operations (line 1 produces one operation
whereas line 3 produces n) where n is a structure parame-
ter. In other words a statement is a syntactic unit, whereas
an operation is a temporal unit. When there are neither
loops nor conditional statements operations and statements
coincide.

2.2.2 Tracking operations

To be able to optimize the operations of a given pro-
gram, the polyhedral model suggests computing the de-
pendencies between all operations as long as they are
within the restrictions presented in 2.1. Indeed, two op-
erations that do not depend on each other can be paral-
lelized, or at least, rescheduled in an order different than

“We will relax this assumption later in this report.

M2 final report

their lexical order in the original program. The notion
of dependency between operations is thus central for the
polyhedral community and that is why we first focus on
its definition and computation.

In order to express dependencies between opera-
tions, we need a way to number each operation with a
unique identifier — an iteration vector. This iteration vector
is a vector whose coordinates are loop counters. The first
coordinate is the counter of the most outer loop and the
last coordinate is the counter of the most inner loop. For
example, in the listing of figure 2, on line 3 the iteration
vector is (i) and in figure 3 the iteration vector on line 3 is
(1,j) while the iteration vector on line 5 is (i, j, k).

(a and b are n—n matrices and c = ab *)

1 for 1 from 1 to n

2 for 3 from 1 to n

3 c(i, 3) =0 (x sl %)

4 for k from 1 to n

5 c(i, J) = c(i, 3) + a(i, k)*b(k, J) (*x s2 *)

Figure 3: Product of polynomials with a for loop.

Remark (loop counter). With for loops, the concept of it-
eration variable is crystal clear since it coincides with loop
counters. However, this concept is less clear when deal-
ing with while loops, which will be addressed later.

From now on, statements will be denoted by s;, in-
stantiated iteration vectors by t; (because an instantiated it-
eration vector can be seen as a timestamp) and operations
by the pair (si,t;). Note that two operations can have
the same iteration vector, typically if they are at the same
loop level. In order to know which is before the other a
Boolean T, s, is set to true if s; is before s, in the text
source program. Intuitively, we define Qs, s, (t) as the
set of all the operations involving s; that have an influ-
ence on the computation of s; at time t. And we define
Ks,,s, (t) as the last operation having an influence on the
computation of s, at time t.

Remark. The original paper defines Q and K by the way
they are computed rather than giving a high level inter-
pretation definition. The intent behind Q and K is as pre-
sented above, their formal definition will be exposed in
the next subsection.

2.3 Computation of dependencies

We are now ready to formally define K and Q and ex-
plain how they are computed in the context of the poly-
hedral model (and the tool [Fea88]). Let’s assume that we
are computing values for a matrix M, and that we want
to compute the operations on which 0, = (s2,t2) (an op-
eration that needs to read values in M) depends. Let’s as-

Paul Iannetta, LIP - 2018 5

sume that o, needs to read M[g(t,)] where g is an affine
function of the iteration vector t,.

However, before we can compute Qs, s, (t2) we need
to gather candidates for s;. We will thus take into account
all operations whose statement is of the form M[f(t;)] :=
... where f is an affine access function of the iteration vec-
tor. The operations on which s, depends will then be
the union of the operations found with s; as their state-
ment.

In order to explicitly define and compute the Q quan-
tity, [Fea91] imposes the following conditions:

C1 the cells that s; and s, try to access should match:
f(t1) = g(t2);

C2 (s1,t1) should happen before (s,,t,) (ie. t2 < ty, or
t) = t1/\Ts, s, where < is the lexicographic ordering
on vectors). This condition is denoted by (s1,t1) <
(s2,t2)

C3 t; must be a valid iteration (denoted as e(t1) > 0, this
notation will become clear in the following example.)

Hence,
as:

the following definition of Qs, s, (t)

Qs1,sz (t) :{t/|f(tl) = Q(t)) (51)t/) < (SZ)t)ae(t/) > O}

and

KS] yS2 (tz) = mqax QS] ,Sz(tz)

Theorem 1 ([Fea91] Dependencies are computable in the
polyhedral model). The 3 conditions above lead to a system
of affine constraints that is then computable by a Linear Pro-
gramming solver (such as PIP [Fea88]).

Proof. The proof can be found in the paper. All three con-
ditions above lead to a finite set of affine constraints. The
lexicographic maximum of such a set can be computed by
solving a Linear Programming instance. O

Example (Computations of dependencies for the matrix
product, shown in Fig. 3). This program is made of two state-
ments: sy on line 3 and s; on line 5, that both write values for
the array c. In order to compute the dependencies we need to
compute Qs, s,, Qs,,s, and Qs, s,. The respective Ks will be
computed by taking the lexicographic maximum on the Qs.

Let’s start by computing Qs, s,. We can see that s does
not need to read any variable. Hence:

Qsyys = 0

M2 final report

Now, let us compute Qs, s,. Let (i1,j1) be the iteration
vector of statement sy and (i2,j2,k2) the iteration vector of
statement s,. We can then express C1, C2 and C3 as affine
conditions. C1is (i1,j1) = (i2,j2). C2is (11,1) < (i2,72).
And C3is 1 < 1i,j < mn. This leads to:

Q(s1,82) (12,32, k2)) ={(i1,j1) 11 <iz2 N j1 <ja}

Lastly, let us compute Qs,s,. Let (i2,j2,k2) and
(14,35, k5) the iteration vectors of statement s, at two distinct
instants. We can then express C1, C2 and C3 as affine con-
ditions. C1is (i2,j2,k2) = (i},j5,k5). C2is (i2,j2,k2) <
(15,35, k5). And C3is 1 < i3,j2,k2 < n. This leads to:

Qls2,52)((i3,j2,k2)) ={(i2,j2,k2) 12 <i5 A j2 <j3 A ka <kj}

24 Toward a more semantic polyhedral
model

The polyhedral model suffers from two main draw-
backs that we want to address in this work:

¢ Firstly, its syntactic restrictions limit its usage in
practice: developers usually want powerful lan-
guages and analyses and complain if the compiler
rejects their program while parsing. Moreover, the
polyhedral tools should work on abstract syntax
trees where these restrictions are easily checkable,
which limits in practice the development of poly-
hedral tools inside production compilers like gcc or
LLVM because the AST is not always available when
performing optimizations. °

* Secondly, it is limited to static (with constant or para-
metric size) arrays without any aliasing. In some
cases, the developer might have used pointer arith-
metic, or lists or trees, whose behavior is “covertly
regular” but the polyhedral model doesn’t apply at
all.

Our work aims at formalizing an extension of the
polyhedral model to more general programs than the
ones historically addressed. This report proposes an
original semantic definition of dependencies on general
flowchart programs with arrays (and simple lists). We
show that this definition:

* Has the same expressivity than the polyhedral model
when a “syntactic polyhedral program” has been
modified by a preprocessing phase like in production

5Actually, there exists polyhedral frameworks such that
Graphite https://gcc.gnu.org/wiki/Graphite or Polly https:
//polly.llvm.org/ that try to recover high level information from
low-level intermediate representations, however they did not formalize
their applicability in a semantic fashion.

https://gcc.gnu.org/wiki/Graphite
https://polly.llvm.org/
https://polly.llvm.org/

Paul Iannetta, LIP - 2018 6

compilers where for loops (ie. static loops with an
explicit loop iteration variable) have been replaced
by while loops and where conditional statements
are allowed.

* Also captures list dependencies, even in the case of
aliasing.

To achieve our objective, we propose the following
agenda:

* First, define a proper language expressive enough to
express all the features of an imperative languages
with arrays and lists. It should be able to express
general computations, general array accesses, non
static loops and finally some kind of aliasing on lists ;

* On this language, propose an operational semantics
and the counterparts of all the key concepts of the
polyhedral model ;

e Show that all these concepts are equivalent on the
sub-case addressed by the polyhedral model ;

* Propose extensions handling more general loops and
lists.

3 General imperative programs with
iteration vectors

In order to properly define all the polyhedral model
concepts in a semantic fashion, we first need to define
a proper language and its semantics. The language we
define is representative of general flowcharts programs
without pointers, but with arrays and lists.

3.1 A minilanguage

We have to be able to deal with the fact that programs
can process whatever type of data as well as using arrays
and lists. However, we want to keep apart integer vari-
ables because we need them as iteration variables.

Hence, the language formalized in this paper is a
pointer-less imperative language with native support for
while loops, if statements as well as arrays and lists.
This language is not designed to do any actual computa-
tions (since the only value it can work on is &) however it
is designed to provide a precise definition of dependen-
cies between operations.

In the grammar depicted in Figure 4, capital letters
(X,Y,Z) are used as placeholders for variable names. n

M2 final report

represents an element of N and term in lowercase repre-
sent an instance of the rule which shares the same first
letter: i.e a. is an instance of Aexp, l. is an instance of
Lexp, etc.

(Aexp) == n | intvar(X) | ap (Aop) a;
<Aop> = /+/ | /*/ | ‘7 | //r

(Bexp) == ‘true’ | “false’ | I(bo)
| b() <BOp> b] | ap <’ ajq | IO ‘<>"'nil’

‘or’ | ‘fand’ | =’
= ‘nil’ | list(X)
var(X) | var(X, ap)

o~ o~~~
5
=
=
= ~
1l

‘if"bg ‘then’co ‘else’ ¢y “fi’
‘while’ bg ‘do’ ¢o ‘done’

Vo = 9o

intvar(X) := ao

cons' “("go *, " list(X7))’

‘nxt” ("list(X7) ‘)" | list(Xop) := list(X7)

Cexp) “skip’ | co ;" ¢q
I
I
I
|
|
I
I hstval(X) =go

(Gexp) == & | 1o | ap | vo | listval(ly) | go * g1

Figure 4: Our Mini-Language: syntax

The language itself is really permissive and can be
used to write programs that are syntactically more gen-
eral that those addressed by the polyhedral model. Se-
mantically, as this language can express arbitrary behav-
ior of more than two numerical variables, it is Turing
complete. The language has not been restricted because
we want to keep the capability to analyze all programs
even though we will not be able to say something signifi-
cant about some programs.

3.1.1 Informal semantics

Type annotations such as intvar, var and 1ist are
here to guarantee that the program is sufficiently correct
to be handled by the grammar. var is a special case of
array, namely array with only one cell.

Those annotations have the following role:

* intvar (Var) guarantees that Var is an integer and
that we can perform standard (Presburger) arith-
metic on it. Only integer variables will matter when
we will compute dependencies. We assume that all
required annotations will be present in the program,
i.e after a typing phase even if they do not syntacti-
cally appear in the original program.

Paul Iannetta, LIP - 2018 7

® var (Var), var (Var, 1) : var (Var) is a shortcut
for var (Var, 0). var (Var, 1) refers to the i-th
cell of the array Var. The annotation var guarantees
that Var is either an array or a scalar variable (ie. an
array of size 1). This annotation is not appended dur-
ing the annotation phase and it should be provided
in the source program.

e list (Var),nil, listval (Var) : listval is an
annotation used to express that we are dealing with
the head of list var. nil being the empty list,
listvar(nil) is undefined. This type annotation
is not appended during the annotation phase and it
should be provided by the source program.

e cons, nxt : nxt (nil) is undefined, nxt (1list)
discards the head of 1ist. list becomes its head. In
cons (a, list (b)), ais consed to 1ist (b) and
the reference 1ist (b) is updated to the address of
the cell containing a. That means that after cons (a,
list (b)), list (b) is the list that starts with a fol-
lowed by 1ist (b) as it was before the cons oper-
ation. Those operators provide the standard oper-
ations on lists (however, those operations are done
in-place).

General expressions (Gexp) are here to allow the
source program to make computations on all types with-
out restrictions.

In the code listings that will appear in this report,
we will most often not write var (Var) and var (Var),
idx, but simply Var and Var (idx).

The formal semantics is presented in the next section.
We first introduce the notion of iteration vectors that will
enable us to compute operation dates inside a rather clas-
sical operational semantics. Then we define an execution
model (in particular the representation of states and the
annotation programs before their execution) and then we
define our semantics. Finally some classical definitions
of the polyhedral model framework are rephrased on the
traces induced by the operational semantics.

3.1.2 Semantic extension: iteration variables and iter-
ation vectors for our language

for loops naturally introduce counter variables.
These are very convenient to number the operations and
allow to label them when investigating the dependencies
between them. Unfortunately, i f and while do not in-
troduce such variables.

Hence, we have to artificially introduce variables
that will serve this purpose. This is a classical activ-
ity in static analysis, for instance, this is widely used

M2 final report

as a preliminary step to invariant generation in order
to compute the worst-case execution time of a pro-
gram [HAMM14].

Iteration variables are created so that operations are
numbered hierarchically, the first level counts the num-
ber of operations at level zero, the second level those at
level one, and so on. The iteration vector is the concate-
nation of these variables. The leftmost coordinate is the
outermost iteration variable and the rightmost coordinate
is the innermost iteration variable. This allows sorting of
operations by their iteration vector, with respect to the
lexicographic order.

However, since i f statements have two branches we
have to do some extra work in order to make them com-
patible with the lexicographic order. This is done by num-
bering the operation in the then branch by the opposite
of the number of statements of that branch. As can be
seen in the listing in Figure 5 the then branch of the i f
starts at —1 because this branch contains one statement.
This works only because, unlike while, if are only exe-
cuted once.

01 k0 := 0;
02 i = 5;
03 kO := intvar(k0)+1;
04 k1 := 0;
15 = 5 05 while (var(i) <> 1)
5 while i <> 1 do 06 if (intvar (i) mod 2 == 0)
. . 07 k2 := -1;
3 if i mod 2 == 0 . .
4 =i/ 2 08 i := var(i)/2;
: 09 k2 := var (k2)+1
5 else
6 Loim 3wi 41 10 else:
: 11 k2 := 0
12 i := 3xvar(i)+1
13 k2 := intvar (k2)+1
14 k1 := intvar(kl)+1
15 k0 := intvar (k0)+1

a) Before annotation b) After annotation

Figure 5: The Syracuse algorithm

For example, the statement on line 8 in the Figure 5b
has (ko k1 k2) as iteration vector and when the program
is run the iteration vector is instantiated with the current
values of ky, k1 and k;.

Here again, we delegate the creation of the iteration
variables to a preprocessing phase, as we explain in the next
section.

3.1.3 Annotation of a general program

As can be seen in the listing in Figure 5, once anno-
tated the program is much less readable. Hence, the an-
notation is done by performed by the algorithm in Figure

Paul Iannetta, LIP - 2018 8

5b. The annotation phase inserts the iteration variables
and append the type annotation ‘itervar’ to all variables
with an occurrence in if and while conditions.

annot :: [Cmd] -> [Cmd]
annot prog = fst (annot_ 1 [0] (intvar('k0') := 0 : prog)
annot_ :: Integer -> [Integer] -> [Cmd] -> ([Cmd], Integer)
annot_ nxt vec (If cond pos neg : tl) =
(If cond' pos' neg' : incr : tl', nxt'
where
cond' = annot_cond cond
len = length(pos)
nxt0 = nxt + 1
pos'', nxtl = annot_ nxt0 vec pos
neg'', nxt2 = annot_ nxtl vec neg
pos' = intvar('k' ++ nxt') := -len : pos''
neg' = intvar('k' ++ nxt') := 0 : neg''
incr = intvar('k' ++ nxt) := intvar('k' ++ nxt) + 1
tl', nxt' = annot_ nxt2 vec tl
annot_ nxt vec (While cond cs : tl) =
(While cond' cs' : incr : tl', nxt'")
where
cond' = annot_cond cond
nxt0 = nxt + 1
cs'', nxtl = annot_ nxt0 vec cs

cs' = intvar('k' ++ nxt') := 0 : cs''
incr = intvar('k' ++ nxt) := intvar('k' ++ nxt)
tl', nxt' = annot_ nxtl vec tl
annot_ nxt vec (cmd : tl) = (cmd :
where
incr

+ 1
incr : tl', nxt)
= intvar ('k' ++4+ nxt) := intvar('k' ++ nxt) + 1

(condl and cond2) =
cond?2)

annot_cond (annot_cond condl) and (

annot_cond

annot_cond (condl or cond2) = (annot_cond condl) or (
annot_cond cond2)
annot_cond (not cond) = not (annot_cond cond)

annot_cond var (X) = intvar (X)
annot_cond cond = cond

Figure 6: Annotation Algorithm

From now on, we will only work on programs that
are not annotated.

3.2 Execution Environment, final semantics
of our mini-language

This section presents the language in more depth; in
particular, the grammar and semantic will be fully de-
fined. Since we need to store information during the exe-
cution in order to have a clear definition of dependencies
(since everything here is defined dynamically there is no
restriction on the class of dependencies we are able to de-
fine), a memory model has to be designed and integrated
into the intermediate representation of the program we
want to analyze.

3.21 Memory Model

The main hypothesis is that arrays as well as every
thing contained in a list cell are contiguous. The details
concerning memory management are not important as

M2 final report

k0 := 0;
1 c(0) := 0;
kO := kO + 1;
A, 2 1 :=1;
éi(?): . 0 KO := k0 + 1;
3 while i <= n do kl.:: 9;
. . 3 while i <= n do
4 c(i) = c(i-1) + 1;)
. . 4 c(i) = c(i-1) + 1;
5 i =1+ 1
6 don k1l := k1 + 1;
one 5 ioi= i+ 1;
kl := k1 + 1
6 done;
kO := k0 + 1

a) Before annotation b) After annotation

Figure 7: Array filling with increasing values

11 :=0;

2 list(vals) := nil;

3 while i <= n do

4 cons (i, list(vals));

5 i =1+ 1

6 done;

7 save(list(vals'), list(vals'));
8 while list(vals) <> nil do
9 res := listval (vals);
10 nxt (list (vals))
11 done

Figure 8: Creation and Reduction of a list

long as we can get the addresses of each object. A valid
memory model is presented in the appendix A which de-
scribes the implementation of an interpreter for our mini-
language in PROLOG.

In order to guarantee those hypotheses, ie. we need
to know the size of all the variables appearing in the pro-
gram, we need to declare those variables as well as their
size beforehand. However, in this paper, we assume the
declaration has been done somewhere, and thus it is not
included in our code examples (nevertheless, that is ex-
plicitly done in the PROLOG code.

3.2.2 States

A state should represent the name of the variables
currently allocated as well as the state of the memory and
the timestamp of the current operation. It is defined as a
triple (Mem, Loc, Vec). More precisely, the types of Loc,
Mem and Vec are as follows.

e Joc:vars —» N
e Mem: N — {&} x (String" x NV)
e Vec: String" x NN

Loc is a map from the set of variables to the set of

Paul Iannetta, LIP - 2018 9

Loc Mem
Variable names | Addresses || Addresses | Values

intvar(ko) 0 0 3
var(c,0) 1 1 1
var(c, 1) 2 2 2
var(c,2) 3 3 3
intvar(i) 4 4 2
intvar(ky) 5 5 4

Figure 9: End state of the annotated program of fig. 7b.

memory addresses; Mem is a map from the set of mem-
ory addresses to pairs made up of the value stored at this
address as well as the instantiated iteration vector of the
operation that wrote this cell; Vec is the instantiated iter-
ation vector of the current operation.

As an illustration, Figure 9 gives the shape of the end
state of the annotated program in Figure 7b.

And the end iteration vector is {(ko), (3)}. Because,
as we will see later, k; has been dropped at the end of the
while.

In order to easily refer to coordinates of a state we
define the following functions.

e Loc:state — (Vars — N)
e Mem: state — N — {&} x (String" x NV)
e Vec :state — (String’ x NV)

The parameter of type st ate will most often be writ-
ten in subscript (eg. Locg is function of type (Vars —
N)).

3.2.3 Semantic

We will now expose the (big-step) semantic rules
of that mini-language. Those rules will define the ex-
ecution relation — (this is a transition relation over
(state xCexp) X state).

Second, let’s explain what means:
e o[Var(X, ap) :==gol;
¢ ofcons(go, 1ist(X1))];
e olnxt(list(X))];
o ollist(Xo) = 1ist(Xy)].

- o/ = o[Var(X,ag) := go] is identical to o except that
Memg (Locg(Var(X, ap))) = (go, Vece).

!

o olcons(go, 1ist(Xy))] is identical to o except that
Locgr(1list(X7)) = new_addr. Where new_addr is an

M2 final report

address that has never been used up to this point and
Memg/ (new_addr) = (go, Vecy).

o’ = o[nxt(1ist(Xj))] is identical to o save for, assum-
ing that Memg(Locg(1ist(X1)) = (go,nxt_val)), then
Locg/(1list(Xy)) = nxt_val.

ollist(Xo) list(Xj)] is identical to o save
for, assuming that Locg(list(Xy)) addr, then
Locgr(1list(Xy)) = addr.

SKIP ——7——
(o, skip) — o’

(o,¢0) — 07 (o1,¢1) = o’

COMPOSE

(o,c05¢1) — o’

The two rules above do not need much explanation
but are those which allow considering programs as lists
of statements.

ASSIGN TAB -
(o, Var(X, ap) := go) — olVar(X, ap) := gol

CONSs

(o, cons(go, 1ist(Xy))) — olcons(go, 1ist(Xy Nt

Those two rules are the most important ones since
they create dependencies between operations. What is
important to notice is that the assignment operator, in
some way, overloaded. Indeed, it does not only store the
value of go but it stores at the same time the value of the
iteration vector.

NXT

(0, nxt (1ist(Xo))) — olnxt(list(X1))]

The rule ‘Nxt” works in place. The head of the list
1ist(Xp) is discarded (it still continues to live in mem-
ory) and the reference 1ist(Xy) is updated and is now
referring to the tail of 11st(Xo). That will justify the rule
‘Save’.

SAVE

(0,1ist(Xp) == 1ist(Xy)) — ollist(Xp) := 1ist(Xy)]

This rule ‘Save’ creates a new reference called
list(Xp) tothehead of thelist 1ist(Xy). The purpose of
the ‘Save’ instruction is mainly to be able to rewind to the
start of a list after traversing it. This is, for example, done
in the example in Figure 8. Note that it can be used for
other purposes which are not obvious or desirable. For
example, let us assume that we have a list | and that we
save it to list 1/, let us now assume that we cons a value to

1 Also stores the iteration vector with the value

Paul Iannetta, LIP - 2018 10

1 and another value to 1/, we now have two lists l and 1/
whose heads are different but who share exactly (ie. the
same memory cells) the same tail.

WHE (o,bp) — false

(o, while by do ¢ done) — drop(o)

(o,bg) — true

0,co) — 07 (o7, while by do ¢ done) — ¢’

WHT <

(o, while by do ¢ done) — drop(c”’)

(0,bp) — true (o,c1) — o’

(0, if bo then ¢ else c; fi) — drop(c”’)

{0, bp) — false (o,c2) — o’

(0, if bo then ¢ else ¢, fi) — drop(c”’)

In addition to the while and if classic rules we
need to add specials rules to handle the management of
the iteration vector. The ‘push’ function add its parame-
ter as a coordinate of the iteration vector while the ‘drop’
function discard the last added coordinate of the iteration
vector.

(o,bg) — true (push(X, olintvar(X) := 0]),c) — o7
(o1, while by do ¢ done) — o’

WH’

(o, intvar(X) := 0; while by do ¢ done) — drop(oc”’)

{push(X; olintvar(X):=0]),c1) — o’
(0,if by then intvar(X) := ap;cq else c; fi) — drop(c”’)

T’ (o,bg) — true

(o, bo) — false {(push(X, olintvar(X) :=0]),cz) — ¢’

IF’

(0,if bg then ¢ else intvar(X) := 0; ¢, fi) — drop(c”’)

Those three rules are applied as soon as a while or
if is detected after special variables added by the anno-
tation phase. This way they bypass the normal rules ‘IF’
and “WH’ and add a coordinate to our iteration vector.
And once the rule is done, then the iteration vector is put
back to its previous state.

For example at line 3 in the Figure 7b the variable
monitored by the iteration vector is (ko), at line 4 the vari-
ables monitored are (ko, k7). It should be noted that the
internal representation handled by ‘push” and ‘drop” uses
a FIFO, therefore, the operation that happens on the itera-
tion vector when entering the while is that ky is pushed
on top of ko and once the while is done k; is discarded
and ko becomes again the head of the FIFO.

M2 final report

10

3.3 Traces

For ease of presentation, the relation — introduced

in Section 3.2.3 is big-step, however when defining traces
we will use the small-step counter part of — that we will
also note —.
Definition 3.1 (trace on states). A trace on states L is a se-
quence of pairs of the form (state, command) (oo, co) —
(01,¢1) — ..., and an initial trace is a trace which starts
from the empty state.

In the polyhedral model, the computations that are
actually performed are not of prime importance. This is
why we decided to consider that all those computations
happen on a singleton set {&%}. Moreover, all the memory
accesses are completely deterministic, hence there exists
one unique initial trace. This leads to the following re-
mark.

Remark. There is a one-to-one mapping between iteration
vectors and states.

Therefore, we will from now on work directly on
operations rather than states. Indeed, since an opera-
tion o is the pair (s,t) we can retrieve the correspond-
ing state from t if necessary according to the previous re-
mark.

Definition 3.2 (trace on operations). A trace on operations
O is a sequence of operations o1 — 0, — ...; an initial
trace is a trace that with the trivial iteration vector (the
iteration vector filled with zeroes).

Remark. From now on, trace will always refer to trace
on operations unless stated otherwise. Moreover, we will
only worked on traced were commands about annota-
tions have all been trimmed. For example we do not work
on the trace (s1,t1) — (ko := ko + 1,t') — (s2,t2) but
on the trace where there is no more references to com-
mand about annotations, hence, we would work with
(s1,t1) — (s2,t2).

Definition 3.3 (reachability/validity). An operation
(s1,t) is valid if and only if there exists an initial trace
O = {oi}ien such that there exists o;, such that o;, =
(51) t) .

Definition 3.4 (happens-before: <). There is a natural or-
der < on operations: happens-before. (s1,t1) < (s2,12) iff
forall traces X there exists i and i’ such that oy, =" o0y,
and t; = Vec(oi,) and t; = Vec(oy,).

Paul Iannetta, LIP - 2018

4 Dependencies for general pro-
grams

This section starts by defining dependencies in the
setting permitted by our mini-language. Those defini-
tions are very general and do not suffer from restriction
due to staticness. The second subsection shows how to
convert this dynamic definition to something statically
computable when we are dealing with regular (polyhe-
dral) programs.

4.1 Different types of dependencies

Definition 4.1 (rvars). Let o = (s, t) be an operation, the
set of variables that s needs to read at time t is called
rvars(o).

Definition 4.2 (wvars). Let o = (s,t) be an operation,
the set of variables that s will write at time t is called
wvars(o). wvars(o) is either a singleton or the empty
set.

Example. Let us consider the operation defined by o =
(var(a,i) :=var(a,i—1) +var(a,i) + 1,t). Let us assume
that at time t the variable i is equal to 1 (This information is ac-
cessible since for t we can recover the whole state corresponding
to t and therefore access the access the content of the memory at
this state).

In that case, rvars(o) = {var(a,0),var(a,1)} and
wvars(o) ={var(a,1)}.

Definition 4.3 (Last write). Given an initial trace O and
an operation o, which belongs to O, the function last
returns the operation o;, (which belongs to O) that last
wrote the cell containing the variable v before o, reads it.

The function last satisfies the following formula:

Jiy,0i, = lasto,o,(wvars(v)) € O
AVi 1 <1< iz,wvars(oi,) #{v}

Example. In Fiqure 7, and the sequential initial trace,
the statement s4 is the statement on line 4, the operation
(s4, ({ko, k1},{(3,0)})) writes in cell ¢(1) and needs to read
¢(0) which was last wrote by (s1, ({ko},{0})).

Definition 4.4 (Direct Data Dependencies). Let 0, =
(s2,t2) be an operation, o, directly depends on operation
07 = (s7,t7) if there exists v € rvars(oz) Uwvars(oz)
such that 07 € last,(v). It is denoted by o7 ~ 0;.

Definition 4.5 (Most Recent Direct Data Dependencies).
Let 0, = (s2,t2) be an operation, and D the set of op-
erations on which o, directly depends. The most recent

M2 final report

11

operation on which o, depends is 07 = max. D. Itis
denoted by 01 — 0,.

Example (An operation with two direct dependencies).
In the following case, the direct dependencies of os, are oy, and
01i,. And the most recent dependency is o1, .

Definition 4.6 (Data Dependencies). Operation o, de-
pends on operation o5 iff o1 ~7 0, where ~7 is the
transitive closure of ~.

Example (An operation with three dependencies). In the
following case, the direct dependencies of oi, are o1, and 0s,.
And o1 is an indirect dependency.

4.2 Equivalence with [Fea91]

In this subsection we will prove that, when consid-
ering regular programs with respect to the polyhedral
model, our approach is strictly equivalent to the one pre-
sented in [Fea91]. Let P be a regular program and P’ the
same program rewritten with while loops in the most
straightforward fashion. That is,

for i from start to finish
(x ... %)

done

is rewritten to the following “pseudo polyhedral” pro-
gram:

i := start;

while i <= finish
(* . o)
i=1+1

done

Prop 1. Let o1 = (s1,t1) and o = (s2,t2) be two
operations in an initial trace O then, o7 —» 02 &
Ks,,s, (convert(ty)) = convert(ty) where convert is
the function that converts our iteration vector into the itera-
tion vector introduced in [Fea91].

11

Paul Iannetta, LIP - 2018 12

Proof. The existence of the convert function will be as-
sured by the proposition 3. In this proof, we will show
that if o1 ~ 03 then the conditions C1, C2 and C3 are
satisfied.

C1: From the construction of —», we have the guarantee
that o produces a value for o0, or wrote the same cell
as 0. Hence, the cells that are accessed match ;

C2: The definition of the function last guarantees that

o1 happens before o7 ;

C3: 07 belongs to the initial trace, therefore, the state-

ment s; happens during a valid iteration.

Moreover, the definition of 1ast guarantees that o;
is the last operation before o, that produces a value for
0, or writes the same cell as 0,. Therefore, 0; is the last
operation on which o, depends. Hence, 07 — 0, &
Ks,,s, (convert(t;)) = convert(ty) O

Prop 2. Let o1 = (s1,t1) and 02 = (s2,t2) be two operations
then, o —* 0, & convert(ti) € Qs,,s, (convert(tz))
where convert is the function that converts our iteration vec-
tor into the iteration vector introduced in [Fea91].

Proof. The same proof as for proposition 1 holds. The
only difference is that since we take all direct depen-
dences and the transitive closure we indeed get all the
dependencies. O

This equivalence proves that our formalization in-
cludes the polyhedral model and in this case (for loops
rewritten as while loops) our system can harness the clas-
sical polyhedral computations. We thus reached our first
goal, which is to be able to semantically capture the key
notion of dependency and being able to compute it.
Example. Let’s compute the function convert on the
“Array filling example” of Figure 7, which we recall here:

k0 := 0;
1 c(0) := 0;
k0O := k0 + 1;
21 :=1;
kO := k0 + 1;
k1 := 0;
3 while i <= n do
4 c(i) = c(i-1) + 1;
k1 := k1 + 1;
5 i =1+ 1;
k1l := k1 + 1
6 done;
kO := k0 + 1

Once in the while on line 3 , the value of ko is fixed
forever at 2. Indeed, the last time where ko is increased has no
effect whatsoever since it is the last operation of the program.
Then, we have to compute the relation between i and kq. i
starts at 1 whereas k1 starts at 0. At s1, ko is first, O, then 2,

M2 final report

then 4 and so on. The gap between two values is 2: that is the
number of statements (without taking account of statements
added by the annotation phase) in the loop. Thus, k1 =1+ 2%
(i—1). Hence,

convert(ko,k1):=14+2x(1—1)) = (1)

The decision process of finding the set of dependen-
cies of a given program thus relies to the ability of ef-
fectively computing this convert function. We are thus
searching for a relation between the variables of the pro-
gram which implies a one-to-one relation between the iter-
ation vector and the indices of array accesses.

There is a plethoric literature on invariant generation
for general imperative programs (a survey can be found
in [GS14]) and the computation of transitive closures of
numerical relations.

In the general case, the transitive closure of an affine
relation is not computable, however, there exists sub-
classes that are known to be exactly computable. The
paper [VCB11] propose an algorithm that compute over-
approximations of transitive closures of quasi-affine rela-
tions (a more general family of relations that encompass
affine relations). Moreover, it also returns a Boolean value
that says that this transitive closure is exact.

Prop 3. If the relation is a translation, its transitive closure is
computable.

Proof. For instance, [VCB11]. O

Thus, as long as we are dealing with regular poly-

hedral programs our model is decidable because our no-
tions as well as those in [Fea91] coincide.
Remark. Proposition 1, 2 and 3 give us a decision proce-
dure to test dependency between two given operations
for our model. However, in the case where convert is
invertible we not only have a decision procedure but the
full symbolic graph of dependencies. Since, in our set-
ting of this section, convert is a translation it is invert-
ible, the symbolic graph of dependencies can also be ex-
pressed, computed and stored when we analyse a pseudo
polyhedral program with while loops.

5 Extensions

From this section onward, we present the directions
that we are currently investigating. Therefore, the tone
will be more informal than the previous sections.

Paul Iannetta, LIP - 2018 13

51 “Covertly regular” loops with scalar and

arrays

In the previous section, we addressed the case of
polyhedral loops that have been straightforwardly trans-
formed into while loops. In practice, state-of-the-art pro-
duction compilers like gcc or LLVM can perform a lot
of structural transformations on a given program while
parsing and optimizing. Even in the case of initial syn-
tactic polyhedral loops, a polyhedral-based dependency
analyses may struggle to find whether or not to apply,
and may miss optimisation opportunities.

However, the CFG that is obtained is equivalent to
the initial one, which means that an invariant generator
like ISL [VCB11] should be able to compute a relation that
contains exact ranges of the iteration vectors. Conditions
C1, C2 and C3 are thus replaced by the same conditions
where the validity of a given operation is replaced by is
“reachability” condition (invariant at this point). The re-
sult in this case should thus be a set of constraints that
correspond to the exact set of dependencies of the pro-
gram.

5.2 General (affine or non affine) loops

General loops are loops for which the transition re-
lation is not a simple translation, but a general (affine or
non affine) relation between the program variables. For
this more general case, the transitive closure of the loop
is generally not computable.

In that particular case, a loop invariant generator
will give us an overapproximation of the behavior of the
scalar variables of the program (in a shape we have to
define, we most probably will compute a polyhedron).
We thus will have to take into account this approxima-
tion and define the notion of false dependencies. This is not
a very hard issue, but it will have an impact on future for-
malization of the polyhedral model framework, since it as
an impact on code generation. For instance, a given com-
putation should not wait forever a data it doesn’t really
depend on.

5.3 Lists

This section will present how it is possible to extend
the polyhedral model to a new, dynamic, data structure:
lists.

By definition, lists, unlike arrays, are dynamic data
structures. Hence, in addition to losing iteration variables
when dealing with while loops, we lose the straightfor-
ward canonical representations of memory cells. Indeed,

M2 final report

an array has a fixed size and all its cells are contiguous in
memory which is not the case with lists.

As a first step, we will address a special case of list,
those where it is only possible to insert an element at the be-
ginning. Such lists present the same behavioral properties
as dynamic arrays such as C++’s vectors. It is important
to note that dynamic arrays are already out of the scope
of the polyhedral model since their size is not fixed.

Up until now we have been dealing with arrays.
Hence it may seem strange that instead of addressing the
case of dynamic arrays which is an extension of standard
arrays, we have decided to address the case of lists with
insertion at the beginning. The reason is two-fold. First
their behavior with respect to insertion (from the user’s
viewpoint) is the same as dynamic arrays, the only differ-
ence are that the new cell is appended at the beginning of
the list rather than at the end of the dynamic array and
that there is no built-in index on list cells. Second, when
we will want to add insertion in the middle as an oper-
ation, lists will outperform dynamic arrays. Indeed, in
order to add a value in the middle of a dynamic array
there is a need to shift values, whereas adding a value in
the middle to a list does not have this trade-off.

5.4 On giving numbers to list cells

Unlike arrays which have a built-in index, list cells
does not have that feature and the only way to talk about
a list cell is to know its address in memory. However,
this is not very practical to talk about dependencies in a
setting where memory addresses should not be exposed.
Therefore we introduce a way to index list cells.

A good numbering on list cells should assign each
cell a number that should never change. In order to do
that, the cell number id is given by its distance to the ni1
list. The listing in Figure 10 creates the lists as depicted in
Figure 11.

nxt (list (b)) ;
cons ("", list (b));

1l a = nil;

2 cons("", list(a));
3 cons("", list(a));
4 list (b) = list(a);
5

6

Figure 10: Two lists with a shared tail

Figure 11 does not only illustrate the numbering of
cells but also the fact that we have to deal with aliasing.

13

Paul Iannetta, LIP - 2018 14

nil

Figure 11: Two lists with a shared tail labeled with their
cell number

5.5 On dealing with aliasing

Dealing with aliasing is mandatory to be able to an-
alyze ans optimize lists properly. Indeed, even for some-
thing as simple as traversing a list twice we have to be
able to save the head of the list because it is not possible
to rewind a linked list. This is left for future work.

6 Conclusion

One of our prime goal was to formalize the polyhe-
dral model so as to be able to use it without its intrinsic
limitations due to the fact that it relies entirely on syn-
tax. We addressed those limitations by identifying the
hypotheses within the polyhedral framework when com-
puting dependencies as described in [Fea91]. The hy-
pothesis made by [Fea91] have been all taken into account
when designing our mini-language, however we have re-
laxed some hypotheses like those concerning for loops
and we have made room for extension because we keep
optimizations on lists in sight.

This semantics of the mini-language is defined above
an execution environment which makes explicit the im-
plicit hypotheses that were assummed in the original pa-
per. The semantics allows to define a notion of trace
that is the central for all our definitions and for making
the link between the framework presented in [Fea91] and
ours.

We will now focus on handling correctly programs
with general polyhederal loops and lists.

A An implementation in Prolog

This appendix exposes an implementation in
PROLOG of the mini-language. This tool is used in order
extract the relations of dependency between operations
on programs which terminate . In the case of the poly-
hedral model only iteration variables matter, and we can
safely forget about what the program actually computes.
Therefore, a tool that would analyse dependencies only

6and was also used to debug and validate our semantics.

M2 final report

need to keep track of which operations wrote which
memory cell. However, since we would like to be able
to handle access of the form a[b[i]] := in the
future we still keep a very loose approximation of the
values computed by the actual program, this approx-
imation could be made more precise if needed in the
future.

A1 Details About the Memory Model

Since we want to store the values of the computation,
we need to make sure that the memory model guarantees
that there is no risk whatsoever that to variables overlap
in memory. Hence, we require that every object is defined
beforehand with its name and size.

All variables are global, each variable is alive and ac-
cessible as soon as it has been defined. All variables are
released at the end of the program, however it is possi-
ble to undeclare a name to reuse it later. In order to keep
the memory model as straightforward as possible mem-
ory is never freed, that means that even if a variable is
undeclared the memory used for it will not be freed. This
allows ignoring problems arising as soon as the memory
is fragmented.

A.2 Practical Implementation in Prolog

The implementation is divided into several files each
implementing a logical phase of the analysis: state.pl,
annotation.pl, eval.pl, exec.pl, dot.pl and
utils.pl.

state.pl A state is the conjunction of 4 components:

® Reg: The address of the next unused memory block.
Since memory is never freed, this integer can only
increase.

e Vec: The current value of the iteration vector.

® Loc: A map from variable names to address. That
means that variables are in fact references.

* Mem: A map from the memory address space to the
values held in memory. Alongside values is stored
the value of the iteration vector which wrote the cur-
rent value held in the memory cell.

The other definitions in this file are all about how
commands affect state. The predicates defined by itself
are already sufficient to write programs but since the state
is still exposed to the user and there are no annotations at
this stage hence the iteration vector is not available.

14

Paul Iannetta, LIP - 2018

The annotation part does exactly what the Sec-
tion 3.1.3 explains but it also performs the declara-
tion/undeclaration of iteration variables when needed.

The evaluation externalises the computations hap-
pening in the program in an external file for convenience
because it is used both by the dot phase and the regular
execution phase.

The regular execution phase is in the eval.pl file
and implements the mini-language completely. If a pro-
gram terminates, then the last state is returned.

On the other hand, the dot .p1 file needs to be able
to construct the dependency diagram hence it has to store
all the operations in order to reconstruct the diagram.

A.3 Dependencies in the Finite Case

When the program terminates it is possible to use the
interface exposed by the dot module, to obtain the list of
operations happening in the programs as well as extract-
ing the dependency graph such as the following one. The
snake like dependencies represents loop counters and as
expected they always depend on the last time they were
assigned. The full dependency graph is available in pdf
format as an appendix.

M2 final report

15

15

Figure 12: A part of the dependency graph of program performing a 4x4 matrices multiplication

M2 final report

Paul Iannetta, LIP - 2018

16

[0.4.7]

16

Paul Iannetta, LIP - 2018

References
[ADFG10] Christophe Alias, Alain Darte, Paul
Feautrier, and Laure Gonnord. Multi-

[BHRS08]

[BYR*11]

[DI15]

[DSV05]

[Fea88]

[Fea91]

M2 final report

dimensional rankings, program termina-
tion, and complexity bounds of flowchart
programs. In Proceedings of the 17th Interna-
tional Conference on Static Analysis, SAS 10,
pages 117-133, 2010.

Uday Bondhugula, Albert Hartono, Jagan-
nathan Ramanujam, and Ponnuswamy Sa-
dayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Pro-
ceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Imple-
mentation, PLDI '08, pages 101-113, 2008.
Vamshi Basupalli, Tomofumi Yuki, Sanjay
Rajopadhye, Antoine Morvan, Steven Der-
rien, Patrice Quinton, and Dave Wonna-
cott. ompVerify: Polyhedral analysis for
the OpenMP programmer. In Proceedings
of the 7th International Workshop on OpenMP,
IWOMP 11, pages 37-53, June 2011.

Alain Darte and Alexandre Isoard. Exact
and approximated data-reuse optimizations
for tiling with parametric sizes. In Proceed-
ings of the 24th International Conference on
Compiler Construction, CC 15, pages 151-
170, April 2015.

Alain Darte, Robert Schreiber, and Gilles Vil-
lard. Lattice-based memory allocation. IEEE
Transactions on Computers, 54(10):1242-1257,
2005.

Paul Feautrier. Parametric integer program-
ming. RAIRO Recherche Operationnelle, 22, 09
1988.

Paul Feautrier. Dataflow analysis of array
and scalar references. International Journal of
Parallel Programming, 20(1):23-53, 1991.

17

[Fea92a]

[Fea92b]

[FL11]

[GS14]

17

Paul Feautrier. Some efficient solutions
to the affine scheduling problem, I, one-
dimensional time. International Journal of
Parallel Programming, 21(5):313-348, October
1992.

Paul Feautrier. Some efficient solutions
to the affine scheduling problem, II, multi-
dimensional time. International Journal of
Parallel Programming, 21(6):389-420, Decem-
ber 1992.

Paul Feautrier and Christian Lengauer. The
polyhedron model. In David Padua, ed-
itor, Encyclopedia of Parallel Programming.
Springer, 2011.

Laure Gonnord and Peter Schrammel. Ab-
stract Acceleration in Linear Relation Analy-
sis. Science of Computer Programming, 93, part
B(125 - 153):125 — 153, 2014. Author version
: http:/ /hal.inria.fr/hal-00787212/en.

[HAMM14] Julien Henry, Mihail Asavoae, David Mon-

[VCB11]

[YFRS13]

niaux, and Claire Maiza. How to com-
pute worst-case execution time by optimiza-
tion modulo theory and a clever encoding of
program semantics. In Youtao Zhang and
Prasad Kulkarni, editors, LCTES, pages 43—
52. ACM, 2014.

Sven Verdoolaege, Albert Cohen, and Anna
Beletska. Transitive Closures of Affine Inte-
ger Tuple Relations and their Overapproxi-
mations. In Eran Yahav, editor, SAS 2011 -
The 18th International Static Analysis Sympo-
sium, volume 6887 of LNCS, pages 216-232,
Venice, Italy, September 2011. Springer.
Tomofumi Yuki, Paul Feautrier, Sanjay Ra-
jopadhye, and Vijay Saraswat. Array
dataflow analysis for polyhedral X10 pro-
grams. In Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP "13, pages 23—
34, February 2013.

	Introduction
	Context
	The polyhedral model framework
	Limits of the polyhedral model, motivations of this internship
	Overview

	Presentation of ada: contribution and limits
	Hypotheses and Restrictions
	Notations
	Operations and Statements
	Tracking operations

	Computation of dependencies
	Toward a more semantic polyhedral model

	General imperative programs with iteration vectors
	A mini language
	Informal semantics
	Semantic extension: iteration variables and iteration vectors for our language
	Annotation of a general program

	Execution Environment, final semantics of our mini-language
	Memory Model
	States
	Semantic

	Traces

	Dependencies for general programs
	Different types of dependencies
	Equivalence with ada

	Extensions
	``Covertly regular'' loops with scalar and arrays
	General (affine or non affine) loops
	Lists
	On giving numbers to list cells
	On dealing with aliasing

	Conclusion
	An implementation in Prolog
	Details About the Memory Model
	Practical Implementation in Prolog
	Dependencies in the Finite Case

